Abstract

Numerical computations in the framework of the generalized Lorenz–Mie theory require the evaluation of a new double set of coefficients gn,TMm and gn,TEm (n = 1, …, ∞; m = − n, … +n). A localized interpretation of these coefficients is designed to permit fast and accurate computations, even on microcomputers. When the scatter center is located on the axis of the beam, a previously published localized approximation for a simpler set of coefficients gn is recovered as a special case. The subscript n in coefficients gn and gnm is associated with ray localization and discretization of space in directions perpendicular to the beam axis, while superscript m in coefficients gnm is associated with azimuthal wave modes.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription