D. L. Turcotte, “Fractals in geology and geophysics,” Pure Appl. Geophys. 131, 171–196 (1989).

[CrossRef]

J. Huang, D. L. Turcotte, “Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images,” J. Geophys. Res. 94, 7491–7495 (1989).

[CrossRef]

D. L. Turcotte, “A fractal interpretation of topography and geoid spectra on the Earth, Moon, Venus, and Mars, in Proceedings of the Lunar Planetary Science Conference 17, Part 2, J. Geophys. Res. 92 suppl., E597–E601 (1987).

D. Gilbert, V. Courtillot, “Seasat altimetry and the South Atlantic geoid, I. Spectral analysis,” J. Geophys. Res. 92, 6235–6248 (1987).

[CrossRef]

D. L. Turcotte, “Fractals and fragmentation,” J. Geophys. Res. 91, 1921–1926 (1986).

[CrossRef]

C. G. Fox, D. E. Hayes, “Quantitative methods for analyzing the roughness of the seafloor,” Rev. Geophys. 23, 1–48 (1985).

[CrossRef]

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

M. F. Goodchild, “Fractals and the accuracy of geographical measures,” Math. Geol. 12, 85–98 (1980).

[CrossRef]

T. H. Bell, “Mesoscale sea floor roughness,” Deep-Sea Res. 26A, 65–76 (1979).

[CrossRef]

B. Mandelbrot, “Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands,” Proc. Natl. Acad. Sci. USA 72, 3825–3828 (1975).

[CrossRef]

T. H. Bell, “Statistical features of sea-floor topography,” Deep-Sea Res. 22, 883–892 (1975).

B. A. Warren, “Transpacific hydrographic sections at lats. 43° S and 28° S: the SCORPIO Expedition. II. Deep water,” Deep-Sea Res. 20, 9–38 (1973).

G. Balmino, K. Lambeck, W. M. Kaula, “A spherical harmonic analysis of the Earth’s topography,” J. Geophys. Res. 78, 478–481 (1973).

[CrossRef]

F. P. Bretherton, “Momentum transport by gravity waves,” Q. J. R. Meteorol. Soc. 95, 213–243 (1969).

[CrossRef]

B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science 156, 636–638 (1967).

[CrossRef]
[PubMed]

C. Cox, H. Sandstrom, “Coupling of internal and surface waves in water of variable depth,” J. Oceanogr. Soc. Jpn. 20, 499–513 (1962).

K. Aki, “A probabilistic synthesis of precursory phenomena,” in Earthquake Prediction, D. W. Simpson, P. G. Richards, eds. (American Geophysical Union, Washington, D.C., 1981), pp. 566–574.

G. Balmino, K. Lambeck, W. M. Kaula, “A spherical harmonic analysis of the Earth’s topography,” J. Geophys. Res. 78, 478–481 (1973).

[CrossRef]

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

T. H. Bell, “Mesoscale sea floor roughness,” Deep-Sea Res. 26A, 65–76 (1979).

[CrossRef]

T. H. Bell, “Statistical features of sea-floor topography,” Deep-Sea Res. 22, 883–892 (1975).

F. P. Bretherton, “Momentum transport by gravity waves,” Q. J. R. Meteorol. Soc. 95, 213–243 (1969).

[CrossRef]

D. Gilbert, V. Courtillot, “Seasat altimetry and the South Atlantic geoid, I. Spectral analysis,” J. Geophys. Res. 92, 6235–6248 (1987).

[CrossRef]

C. Cox, H. Sandstrom, “Coupling of internal and surface waves in water of variable depth,” J. Oceanogr. Soc. Jpn. 20, 499–513 (1962).

C. G. Fox, D. E. Hayes, “Quantitative methods for analyzing the roughness of the seafloor,” Rev. Geophys. 23, 1–48 (1985).

[CrossRef]

D. Gilbert, V. Courtillot, “Seasat altimetry and the South Atlantic geoid, I. Spectral analysis,” J. Geophys. Res. 92, 6235–6248 (1987).

[CrossRef]

M. F. Goodchild, “Fractals and the accuracy of geographical measures,” Math. Geol. 12, 85–98 (1980).

[CrossRef]

C. G. Fox, D. E. Hayes, “Quantitative methods for analyzing the roughness of the seafloor,” Rev. Geophys. 23, 1–48 (1985).

[CrossRef]

J. Huang, D. L. Turcotte, “Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images,” J. Geophys. Res. 94, 7491–7495 (1989).

[CrossRef]

G. Balmino, K. Lambeck, W. M. Kaula, “A spherical harmonic analysis of the Earth’s topography,” J. Geophys. Res. 78, 478–481 (1973).

[CrossRef]

G. Balmino, K. Lambeck, W. M. Kaula, “A spherical harmonic analysis of the Earth’s topography,” J. Geophys. Res. 78, 478–481 (1973).

[CrossRef]

B. Mandelbrot, “Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands,” Proc. Natl. Acad. Sci. USA 72, 3825–3828 (1975).

[CrossRef]

B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science 156, 636–638 (1967).

[CrossRef]
[PubMed]

B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, Calif., 1982).

B. Mandelbrot, “Self-affine fractal sets, I: the basic fractal dimensions,” in Fractals in Physics, L. Pietronero, E. Tosatti, eds. (Elsevier, Amsterdam, 1986), pp. 3–15.

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

C. Cox, H. Sandstrom, “Coupling of internal and surface waves in water of variable depth,” J. Oceanogr. Soc. Jpn. 20, 499–513 (1962).

D. L. Turcotte, “Fractals in geology and geophysics,” Pure Appl. Geophys. 131, 171–196 (1989).

[CrossRef]

J. Huang, D. L. Turcotte, “Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images,” J. Geophys. Res. 94, 7491–7495 (1989).

[CrossRef]

D. L. Turcotte, “A fractal interpretation of topography and geoid spectra on the Earth, Moon, Venus, and Mars, in Proceedings of the Lunar Planetary Science Conference 17, Part 2, J. Geophys. Res. 92 suppl., E597–E601 (1987).

D. L. Turcotte, “Fractals and fragmentation,” J. Geophys. Res. 91, 1921–1926 (1986).

[CrossRef]

R. F. Voss, “Random fractals: characterization and measurement,” in Scaling Phenomena in Disordered Systems, R. Pynn, A. Skjeltrop, eds. (Plenum, New York, 1985), pp. 1–11.

R. F. Voss, “Random fractal forgeries,” in Fundamental Algorithms for Computer Graphics, Vol. F17 of NATO ASI Series, R. A. Earnshaw, ed. (Springer-Verlag, Berlin, 1985), pp. 805–835.

[CrossRef]

R. F. Voss, “Fractals in nature: from characterization to simulation,” in The Science of Fractal Images, H. Peitgen, D. Saupe, eds. (Springer-Verlag, New York, 1988), pp. 21–70.

[CrossRef]

B. A. Warren, “Transpacific hydrographic sections at lats. 43° S and 28° S: the SCORPIO Expedition. II. Deep water,” Deep-Sea Res. 20, 9–38 (1973).

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

B. A. Warren, “Transpacific hydrographic sections at lats. 43° S and 28° S: the SCORPIO Expedition. II. Deep water,” Deep-Sea Res. 20, 9–38 (1973).

T. H. Bell, “Statistical features of sea-floor topography,” Deep-Sea Res. 22, 883–892 (1975).

T. H. Bell, “Mesoscale sea floor roughness,” Deep-Sea Res. 26A, 65–76 (1979).

[CrossRef]

D. L. Turcotte, “Fractals and fragmentation,” J. Geophys. Res. 91, 1921–1926 (1986).

[CrossRef]

D. Gilbert, V. Courtillot, “Seasat altimetry and the South Atlantic geoid, I. Spectral analysis,” J. Geophys. Res. 92, 6235–6248 (1987).

[CrossRef]

G. Balmino, K. Lambeck, W. M. Kaula, “A spherical harmonic analysis of the Earth’s topography,” J. Geophys. Res. 78, 478–481 (1973).

[CrossRef]

J. Huang, D. L. Turcotte, “Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images,” J. Geophys. Res. 94, 7491–7495 (1989).

[CrossRef]

C. Cox, H. Sandstrom, “Coupling of internal and surface waves in water of variable depth,” J. Oceanogr. Soc. Jpn. 20, 499–513 (1962).

M. F. Goodchild, “Fractals and the accuracy of geographical measures,” Math. Geol. 12, 85–98 (1980).

[CrossRef]

G. I. Barenblatt, A. V. Zhivago, Y. P. Neprochnov, A. A. Ostrovskiy, “The fractal dimension: a quantitative characteristic of ocean-bottom relief,” Oceanology 24, 695–697 (1984).

B. Mandelbrot, “Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands,” Proc. Natl. Acad. Sci. USA 72, 3825–3828 (1975).

[CrossRef]

D. L. Turcotte, “A fractal interpretation of topography and geoid spectra on the Earth, Moon, Venus, and Mars, in Proceedings of the Lunar Planetary Science Conference 17, Part 2, J. Geophys. Res. 92 suppl., E597–E601 (1987).

D. L. Turcotte, “Fractals in geology and geophysics,” Pure Appl. Geophys. 131, 171–196 (1989).

[CrossRef]

F. P. Bretherton, “Momentum transport by gravity waves,” Q. J. R. Meteorol. Soc. 95, 213–243 (1969).

[CrossRef]

C. G. Fox, D. E. Hayes, “Quantitative methods for analyzing the roughness of the seafloor,” Rev. Geophys. 23, 1–48 (1985).

[CrossRef]

B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science 156, 636–638 (1967).

[CrossRef]
[PubMed]

B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, Calif., 1982).

K. Aki, “A probabilistic synthesis of precursory phenomena,” in Earthquake Prediction, D. W. Simpson, P. G. Richards, eds. (American Geophysical Union, Washington, D.C., 1981), pp. 566–574.

B. Mandelbrot, “Self-affine fractal sets, I: the basic fractal dimensions,” in Fractals in Physics, L. Pietronero, E. Tosatti, eds. (Elsevier, Amsterdam, 1986), pp. 3–15.

R. F. Voss, “Random fractals: characterization and measurement,” in Scaling Phenomena in Disordered Systems, R. Pynn, A. Skjeltrop, eds. (Plenum, New York, 1985), pp. 1–11.

R. F. Voss, “Random fractal forgeries,” in Fundamental Algorithms for Computer Graphics, Vol. F17 of NATO ASI Series, R. A. Earnshaw, ed. (Springer-Verlag, Berlin, 1985), pp. 805–835.

[CrossRef]

R. F. Voss, “Fractals in nature: from characterization to simulation,” in The Science of Fractal Images, H. Peitgen, D. Saupe, eds. (Springer-Verlag, New York, 1988), pp. 21–70.

[CrossRef]