Abstract

We have examined the accuracy of orientation and spatial-frequency discrimination for sine-wave gratings that vary in either luminance or color. The equiluminant chromatic gratings were modulated along either a tritanopic confusion axis (so that they were detectable on the basis of activity in only the short-wavelength-sensitive cones) or an axis of constant short-wavelength-sensitive cone excitation (so that they could be detected on the basis of opposing activity in only the long- and medium-wavelength-sensitive cones). Grating contrasts ranged from the detection threshold to the highest levels that we could produce; the contrasts of the luminance and color patterns were equated for equal multiples of their respective detection thresholds. Discrimination thresholds for all patterns showed a similar dependence on stimulus contrast, rising sharply at low contrasts and becoming nearly asymptotic at moderate contrasts. However, even at threshold contrasts, observers could still reliably discriminate sufficiently large differences in the orientation or spatial frequency of all patterns, and they could also reliably identify the type of variation (luminance or which color) defining the grating. For most conditions the discrimination thresholds did not differ from the two types of color grating and reached values as low as 1 deg (orientation) or 4% (spatial frequency). Thus observers were able to make accurate spatial judgments on the basis of either type of chromatic information. However, these thresholds were slightly but consistently higher than the thresholds for comparable luminance gratings. This difference in the color and luminance discrimination thresholds may reflect somewhat coarser orientation and spatial-frequency selectivity in the mechanisms encoding the chromatic patterns.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969);E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973);D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,” J. Opt. Soc. Am. 73, 742–750 (1983);K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
    [CrossRef] [PubMed]
  2. D. P. Andrews, “Perception of contour orientation in the fovea. Part I: Short lines,” Vision Res. 7, 975–997 (1967).
    [CrossRef] [PubMed]
  3. G. Westheimer, K. Shimamura, S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332–338 (1976).
    [CrossRef] [PubMed]
  4. J. Hirsch, R. Hylton, “Limits of spatial-frequency discrimination as evidence of neural interpolation,” J. Opt. Soc. Am. 72, 1367–1374 (1982).
    [CrossRef] [PubMed]
  5. O. J. Braddick, F. W. Campbell, J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R. Held, H. Leibowitz, H. Teuber, eds. (Springer-Verlag, New York, 1978), pp. 3–38;D. H. Kelly, C. A. Burbeck, “Critical problems in spatial vision,” CRC Crit. Rev. Biomed. Eng. 10, 125–177 (1984);R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, Oxford, 1988).
  6. M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
    [PubMed]
  7. J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
    [CrossRef] [PubMed]
  8. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966);A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
    [CrossRef] [PubMed]
  9. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  10. Preliminary accounts of this research were presented at the 1986 and 1988 annual meetings of the Association for Research in Vision and Ophthalmology, Sarasota, Florida.
  11. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  12. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [CrossRef] [PubMed]
  13. W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).
  14. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1978).
    [CrossRef]
  15. D. J. Finney, Probit Analysis (Cambridge U. Press, London, 1971).
  16. T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
    [CrossRef] [PubMed]
  17. D. Regan, K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147–155 (1985).
    [CrossRef] [PubMed]
  18. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
    [PubMed]
  19. A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A4, 1428–1438 (1987).
    [CrossRef] [PubMed]
  20. D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
    [CrossRef]
  21. J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–757 (1983).
    [CrossRef] [PubMed]
  22. J. Hirsch, R. Hylton, “Spatial-frequency discrimination at low spatial frequencies: evidence for position quantization by receptive fields,” J. Opt. Soc. Am. A 2, 128–135 (1985);E. S. Richter, D. Yager, “Spatial-frequency difference thresholds for central and peripheral viewing,” J. Opt. Soc. Am. A 1, 1136–1139 (1984);M. Woodward, E. R. Ettinger, D. Yager, “The spatial frequency discrimination function at low contrasts,” Spatial Vision 1, 13–17 (1985).
    [CrossRef] [PubMed]
  23. M. J. Mayer, C. B. Y. Kim, “Smooth discrimination functions for foveal, high contrast, mid spatial frequencies,” J. Opt. Soc. Am. A 3, 1957–1969 (1986).
    [CrossRef] [PubMed]
  24. See also R. L. P. Vimal, “Spatial frequency discriminations: inphase and counter-phase photopic conditions compared,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 448 (1988).
  25. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  26. J. P. Thomas, “Detection and identification: how are they related,” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
    [CrossRef] [PubMed]
  27. J. P. Thomas, J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652–659 (1979).
    [CrossRef] [PubMed]
  28. D. H. Kelly, “No oblique effect in chromatic pathways,” J. Opt. Soc. Am. 65, 1512–1514 (1975).
    [CrossRef]
  29. J. P. Thomas, J. Gille, R. A. Barker, “Simultaneous detection and identification: theory and data,” J. Opt. Soc. Am. 72, 1642–1651 (1982).
    [CrossRef] [PubMed]
  30. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
    [CrossRef] [PubMed]
  31. Presumably this result would not be found for chromatic gratings at spatial frequencies higher than those that we examined for which the sparser spatial sampling by the S cones would be expected to degrade discriminations of S-cone-detected patterns more than discriminations that depend on L or M cone activity.D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.
  32. K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285;A. Elsner, “Hue difference contours can be used in processing orientation information,” Percept. Psychophys. 25, 451–456 (1978);O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
    [CrossRef]
  33. A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
    [CrossRef]
  34. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between luminance and chromatic gratings,” J. Opt. Soc. Am. 73, 11–18 (1983);K. K. De Valois, M. A. Webster, E. Switkes, “Orientation selectivity for luminance and color patterns,” Invest. Ophthalmol. Vis. Sci. Suppl. 25, 232 (1984).
    [CrossRef]
  35. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
    [CrossRef] [PubMed]
  36. I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
    [CrossRef] [PubMed]
  37. R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their functional visual roles,” Trends Neurosci. 9, 229–235 (1986).
    [CrossRef]
  38. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987);“Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
    [PubMed]
  39. See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).
  40. A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984);W. H. Merigan, “Role of the P pathway in the chromatic and achromatic vision of macaques,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).
  41. J. D. Mollon, in The Perceptual World, K. von Fieandt, I. K. Moustgaard, eds. (Academic, London, 1977), pp. 89–94;A. Treisman, “Properties, parts, and objects,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. II.
  42. M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
    [CrossRef] [PubMed]
  43. J. B. Mulligan, J. Krauskopf, “Vernier acuity for chromatic stimuli,” Invest. Ophthalmol. Vis. Sci. 23, 276 (1983).
  44. W. S. Geisler, “Sequential ideal observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
    [CrossRef] [PubMed]
  45. A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, New York, 1983), pp. 100–114;H. R. Wilson, D. J. Gelb, “Modified line-element theory for spatial frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124–131 (1984).
    [CrossRef] [PubMed]
  46. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
    [CrossRef] [PubMed]
  47. C. A. Burbeck, “Locus of spatial-frequency discrimination,” J. Opt. Soc. Am. A 4, 1807–1813 (1987).
    [CrossRef] [PubMed]
  48. L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1985).
    [CrossRef]

1989 (2)

See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).

W. S. Geisler, “Sequential ideal observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

1988 (3)

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

See also R. L. P. Vimal, “Spatial frequency discriminations: inphase and counter-phase photopic conditions compared,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 448 (1988).

1987 (3)

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987);“Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[PubMed]

C. A. Burbeck, “Locus of spatial-frequency discrimination,” J. Opt. Soc. Am. A 4, 1807–1813 (1987).
[CrossRef] [PubMed]

1986 (4)

M. J. Mayer, C. B. Y. Kim, “Smooth discrimination functions for foveal, high contrast, mid spatial frequencies,” J. Opt. Soc. Am. A 3, 1957–1969 (1986).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their functional visual roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

1985 (6)

1984 (2)

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984);W. H. Merigan, “Role of the P pathway in the chromatic and achromatic vision of macaques,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

1983 (4)

1982 (5)

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

J. Hirsch, R. Hylton, “Limits of spatial-frequency discrimination as evidence of neural interpolation,” J. Opt. Soc. Am. 72, 1367–1374 (1982).
[CrossRef] [PubMed]

J. P. Thomas, J. Gille, R. A. Barker, “Simultaneous detection and identification: theory and data,” J. Opt. Soc. Am. 72, 1642–1651 (1982).
[CrossRef] [PubMed]

1981 (2)

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
[CrossRef] [PubMed]

1980 (2)

1979 (1)

1978 (1)

1976 (1)

1975 (1)

1969 (1)

1967 (1)

D. P. Andrews, “Perception of contour orientation in the fovea. Part I: Short lines,” Vision Res. 7, 975–997 (1967).
[CrossRef] [PubMed]

1966 (1)

Abramov, I.

Aiba, T. S.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

Albrecht, D. G.

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1985).
[CrossRef]

Andrews, D. P.

D. P. Andrews, “Perception of contour orientation in the fovea. Part I: Short lines,” Vision Res. 7, 975–997 (1967).
[CrossRef] [PubMed]

Atkinson, J.

O. J. Braddick, F. W. Campbell, J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R. Held, H. Leibowitz, H. Teuber, eds. (Springer-Verlag, New York, 1978), pp. 3–38;D. H. Kelly, C. A. Burbeck, “Critical problems in spatial vision,” CRC Crit. Rev. Biomed. Eng. 10, 125–177 (1984);R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, Oxford, 1988).

Barker, R. A.

Bartol, S.

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

Beverley, K. I.

D. Regan, K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147–155 (1985).
[CrossRef] [PubMed]

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

Blythe, I. M.

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

Bouman, M. A.

Boynton, R. M.

Braddick, O. J.

O. J. Braddick, F. W. Campbell, J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R. Held, H. Leibowitz, H. Teuber, eds. (Springer-Verlag, New York, 1978), pp. 3–38;D. H. Kelly, C. A. Burbeck, “Critical problems in spatial vision,” CRC Crit. Rev. Biomed. Eng. 10, 125–177 (1984);R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, Oxford, 1988).

Bradley, A.

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

Brettel, H.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Bromley, J. M.

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

Burbeck, C. A.

Caelli, T.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Campbell, F. W.

O. J. Braddick, F. W. Campbell, J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R. Held, H. Leibowitz, H. Teuber, eds. (Springer-Verlag, New York, 1978), pp. 3–38;D. H. Kelly, C. A. Burbeck, “Critical problems in spatial vision,” CRC Crit. Rev. Biomed. Eng. 10, 125–177 (1984);R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, Oxford, 1988).

Charles, E. R.

See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).

Cohen, M. A.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
[CrossRef] [PubMed]

Collier, R. J.

Presumably this result would not be found for chromatic gratings at spatial frequencies higher than those that we examined for which the sparser spatial sampling by the S cones would be expected to degrade discriminations of S-cone-detected patterns more than discriminations that depend on L or M cone activity.D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

De Valois, K. K.

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between luminance and chromatic gratings,” J. Opt. Soc. Am. 73, 11–18 (1983);K. K. De Valois, M. A. Webster, E. Switkes, “Orientation selectivity for luminance and color patterns,” Invest. Ophthalmol. Vis. Sci. Suppl. 25, 232 (1984).
[CrossRef]

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285;A. Elsner, “Hue difference contours can be used in processing orientation information,” Percept. Psychophys. 25, 451–456 (1978);O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef]

De Valois, R. L.

Derrington, A. M.

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984);W. H. Merigan, “Role of the P pathway in the chromatic and achromatic vision of macaques,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).

Eisner, A.

Finney, D. J.

D. J. Finney, Probit Analysis (Cambridge U. Press, London, 1971).

Freeman, R. D.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

Geisler, W. S.

W. S. Geisler, “Sequential ideal observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

Gille, J.

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Hilz, R.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Hirsch, J.

Holliday, I. E.

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987);“Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Hylton, R.

Jacobs, G. H.

Kelly, D. H.

Kim, C. B. Y.

Krauskopf, J.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

J. B. Mulligan, J. Krauskopf, “Vernier acuity for chromatic stimuli,” Invest. Ophthalmol. Vis. Sci. 23, 276 (1983).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
[CrossRef] [PubMed]

Lennie, P.

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984);W. H. Merigan, “Role of the P pathway in the chromatic and achromatic vision of macaques,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987);“Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

Logothetis, N. K.

See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).

MacLeod, D. I. A.

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
[CrossRef] [PubMed]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

Mayer, M. J.

McKee, S. P.

Mollon, J. D.

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

J. D. Mollon, in The Perceptual World, K. von Fieandt, I. K. Moustgaard, eds. (Academic, London, 1977), pp. 89–94;A. Treisman, “Properties, parts, and objects,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. II.

Morgan, M. J.

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

Mulligan, J. B.

J. B. Mulligan, J. Krauskopf, “Vernier acuity for chromatic stimuli,” Invest. Ophthalmol. Vis. Sci. 23, 276 (1983).

Murray, T. J.

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

Ohzawa, I.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

Perry, V. H.

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their functional visual roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Powell, I.

Regan, D.

D. Regan, K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147–155 (1985).
[CrossRef] [PubMed]

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

Rentschler, I.

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Ruddock, K. H.

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

Schiller, P. H.

See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).

Sclar, G.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

Shapley, R.

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their functional visual roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Shimamura, K.

Skottun, B. C.

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

Stiles, W. S.

W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
[CrossRef] [PubMed]

Switkes, E.

Thomas, J. P.

Thompson, B. J.

Presumably this result would not be found for chromatic gratings at spatial frequencies higher than those that we examined for which the sparser spatial sampling by the S cones would be expected to degrade discriminations of S-cone-detected patterns more than discriminations that depend on L or M cone activity.D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

Thorell, L. G.

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1985).
[CrossRef]

van der Horst, G. J. C.

Vimal, R. L. P.

See also R. L. P. Vimal, “Spatial frequency discriminations: inphase and counter-phase photopic conditions compared,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 448 (1988).

Watson, A. B.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, New York, 1983), pp. 100–114;H. R. Wilson, D. J. Gelb, “Modified line-element theory for spatial frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124–131 (1984).
[CrossRef] [PubMed]

Westheimer, G.

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Presumably this result would not be found for chromatic gratings at spatial frequencies higher than those that we examined for which the sparser spatial sampling by the S cones would be expected to degrade discriminations of S-cone-detected patterns more than discriminations that depend on L or M cone activity.D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

Annu. Rev. Psychol. (1)

J. D. Mollon, “Color vision,” Annu. Rev. Psychol. 33, 41–85 (1982).
[CrossRef] [PubMed]

Appl. Opt. (1)

Brain (1)

D. Regan, S. Bartol, T. J. Murray, K. I. Beverley, “Spatial frequency discrimination in normal vision and in patients with multiple sclerosis,” Brain 105, 734–754 (1982).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

J. B. Mulligan, J. Krauskopf, “Vernier acuity for chromatic stimuli,” Invest. Ophthalmol. Vis. Sci. 23, 276 (1983).

Invest. Ophthalmol. Vis. Sci. Suppl. (2)

See also R. L. P. Vimal, “Spatial frequency discriminations: inphase and counter-phase photopic conditions compared,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 448 (1988).

See also P. H. Schiller, N. K. Logothetis, E. R. Charles, “The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isoluminance,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 323 (1989).

J. Neurophysiol. (1)

B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773–786 (1987).
[PubMed]

J. Neurosci. (2)

M. S. Livingstone, D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309–356 (1984).
[PubMed]

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,”J. Neurosci. 7, 3416–3468 (1987);“Segregation of form, color, movement, and depth: anatomy, physiology, and perception,” Science 240, 740–749 (1988).
[PubMed]

J. Opt. Soc. Am. (11)

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966);A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
[CrossRef] [PubMed]

G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,” J. Opt. Soc. Am. 59, 1482–1488 (1969);E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,” J. Opt. Soc. Am. 63, 1173–1174 (1973);D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,” J. Opt. Soc. Am. 73, 742–750 (1983);K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
[CrossRef] [PubMed]

D. H. Kelly, “No oblique effect in chromatic pathways,” J. Opt. Soc. Am. 65, 1512–1514 (1975).
[CrossRef]

G. Westheimer, K. Shimamura, S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332–338 (1976).
[CrossRef] [PubMed]

J. Hirsch, R. Hylton, “Limits of spatial-frequency discrimination as evidence of neural interpolation,” J. Opt. Soc. Am. 72, 1367–1374 (1982).
[CrossRef] [PubMed]

J. P. Thomas, J. Gille, R. A. Barker, “Simultaneous detection and identification: theory and data,” J. Opt. Soc. Am. 72, 1642–1651 (1982).
[CrossRef] [PubMed]

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between luminance and chromatic gratings,” J. Opt. Soc. Am. 73, 11–18 (1983);K. K. De Valois, M. A. Webster, E. Switkes, “Orientation selectivity for luminance and color patterns,” Invest. Ophthalmol. Vis. Sci. Suppl. 25, 232 (1984).
[CrossRef]

J. P. Thomas, “Underlying psychometric function for detecting gratings and identifying spatial frequency,” J. Opt. Soc. Am. 73, 751–757 (1983).
[CrossRef] [PubMed]

J. P. Thomas, J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652–659 (1979).
[CrossRef] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1978).
[CrossRef]

A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980);P. Cavanagh, D. I. A. MacLeod, S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A4, 1428–1438 (1987).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (7)

J. Hirsch, R. Hylton, “Spatial-frequency discrimination at low spatial frequencies: evidence for position quantization by receptive fields,” J. Opt. Soc. Am. A 2, 128–135 (1985);E. S. Richter, D. Yager, “Spatial-frequency difference thresholds for central and peripheral viewing,” J. Opt. Soc. Am. A 1, 1136–1139 (1984);M. Woodward, E. R. Ettinger, D. Yager, “The spatial frequency discrimination function at low contrasts,” Spatial Vision 1, 13–17 (1985).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147–155 (1985).
[CrossRef] [PubMed]

J. P. Thomas, “Detection and identification: how are they related,” J. Opt. Soc. Am. A 2, 1457–1467 (1985).
[CrossRef] [PubMed]

A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, R. D. Freeman, “Neurophysiological evaluation of the differential response model for orientation and spatial-frequency discrimination,” J. Opt. Soc. Am. A 2, 1607–1610 (1985).
[CrossRef] [PubMed]

M. J. Mayer, C. B. Y. Kim, “Smooth discrimination functions for foveal, high contrast, mid spatial frequencies,” J. Opt. Soc. Am. A 3, 1957–1969 (1986).
[CrossRef] [PubMed]

C. A. Burbeck, “Locus of spatial-frequency discrimination,” J. Opt. Soc. Am. A 4, 1807–1813 (1987).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

J. Physiol. (London) (1)

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984);W. H. Merigan, “Role of the P pathway in the chromatic and achromatic vision of macaques,” Invest. Ophthalmol. Vis. Sci. Suppl. 29, 328 (1988).

Psychol. Rev. (1)

W. S. Geisler, “Sequential ideal observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

Science (1)

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, M. A. Cohen, “Spatial adaptation of short-wavelength pathways in humans,” Science 207, 555–557 (1980).
[CrossRef] [PubMed]

Spatial Vision (1)

I. M. Blythe, J. M. Bromley, I. E. Holliday, K. H. Ruddock, “The contribution of blue-sensitive cones to spatial responses of post-receptoral visual channels in man,” Spatial Vision 1, 277–289 (1986).
[CrossRef] [PubMed]

Trends Neurosci. (1)

R. Shapley, V. H. Perry, “Cat and monkey retinal ganglion cells and their functional visual roles,” Trends Neurosci. 9, 229–235 (1986).
[CrossRef]

Vision Res. (8)

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

M. J. Morgan, T. S. Aiba, “Positional acuity with chromatic stimuli,” Vision Res. 25, 689–695 (1985).
[CrossRef] [PubMed]

T. Caelli, H. Brettel, I. Rentschler, R. Hilz, “Discrimination thresholds in the two-dimensional spatial frequency domain,” Vision Res. 23, 129–133 (1983).
[CrossRef] [PubMed]

D. P. Andrews, “Perception of contour orientation in the fovea. Part I: Short lines,” Vision Res. 7, 975–997 (1967).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1985).
[CrossRef]

Other (8)

Presumably this result would not be found for chromatic gratings at spatial frequencies higher than those that we examined for which the sparser spatial sampling by the S cones would be expected to degrade discriminations of S-cone-detected patterns more than discriminations that depend on L or M cone activity.D. R. Williams, R. J. Collier, B. J. Thompson, “Spatial resolution of the short-wavelength mechanism,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 487–503.

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978), pp. 277–285;A. Elsner, “Hue difference contours can be used in processing orientation information,” Percept. Psychophys. 25, 451–456 (1978);O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef]

A. B. Watson, “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of Images, O. J. Braddick, A. C. Sleigh, eds. (Springer-Verlag, New York, 1983), pp. 100–114;H. R. Wilson, D. J. Gelb, “Modified line-element theory for spatial frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124–131 (1984).
[CrossRef] [PubMed]

Preliminary accounts of this research were presented at the 1986 and 1988 annual meetings of the Association for Research in Vision and Ophthalmology, Sarasota, Florida.

W. S. Stiles, Mechanisms of Colour Vision (Academic, New York, 1978).

D. J. Finney, Probit Analysis (Cambridge U. Press, London, 1971).

O. J. Braddick, F. W. Campbell, J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R. Held, H. Leibowitz, H. Teuber, eds. (Springer-Verlag, New York, 1978), pp. 3–38;D. H. Kelly, C. A. Burbeck, “Critical problems in spatial vision,” CRC Crit. Rev. Biomed. Eng. 10, 125–177 (1984);R. L. De Valois, K. K. De Valois, Spatial Vision (Oxford U. Press, Oxford, 1988).

J. D. Mollon, in The Perceptual World, K. von Fieandt, I. K. Moustgaard, eds. (Academic, London, 1977), pp. 89–94;A. Treisman, “Properties, parts, and objects,” in Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Vol. II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Estimates of the chromatic directions corresponding to the S and L–M axes passing through our average chromaticity. The change in grating contrast threshold owing to the presence of an adapting background is plotted for gratings defined by color variations along different chromatic axes. The angle of the color axis corresponds to the angle of color variation in the MacLeod-Boynton14 color diagram: (a) 430-nm background chosen to desensitize the S cones, (b) 580-nm background chosen to desensitize the L and M cones. The observer was MW.

Fig. 2
Fig. 2

CIE coordinates of the monitor phosphors and of the chromatic variations used to define the L–M and S chromatic gratings.

Fig. 3
Fig. 3

Examples of orientation discrimination for gratings at different contrasts. The percentage of correct orientation discriminations is plotted as a function of the difference in orientation between the two gratings: (a) 4 times threshold contrast; (b) 16 times threshold contrast. Filled circles are luminance gratings; open circles are L–M gratings; open triangles are S gratings. The observer was MW.

Fig. 4
Fig. 4

Orientation discrimination thresholds for the luminance (filled circles), L–M (open circles), and S (open triangles) gratings as a function of the multiple of threshold contrast: (a) results for subject MW, (b) results for subject SW. (Note that the orientation axis is scaled differently for the two.) The insets show the thresholds replotted on linear axes. In (a), the filled triangle indicates the thresholds for the S gratings remeasured in the presence of a long-wavelength adapting background that was added to increase isolation of the S cones.

Fig. 5
Fig. 5

Frequency discrimination thresholds as a function of the multiple of threshold contrast for luminance (filled circles), L–M (open circles), or S (open triangles) gratings: (a) results for observer MW, (b) results for observer SW. The insets show the thresholds replotted on linear axes.

Fig. 6
Fig. 6

Contrast sensitivity (reciprocal of nominal contrast detection thresholds) for luminance (filled circles), L–M (open circles), or S (open triangles) gratings as a function of spatial frequency. The observer was MW.

Fig. 7
Fig. 7

Frequency discrimination thresholds at 20 times contrast as a function of the reference frequency for luminance gratings (filled circles), L–M gratings (open circles), or S gratings (open triangles). (a) Observer MW, (b) observer AL.

Fig. 8
Fig. 8

Results of simultaneous discrimination-detection task for (a) luminance, (b) L–M, or (c) S gratings that differed by 16 deg (±8 deg from vertical): probability of detecting which interval the grating was presented in as a function of the grating contrast (open circles), probability of correctly discriminating the grating orientation as a function of contrast (filled triangles). The observer was MW.

Fig. 9
Fig. 9

Contrast thresholds for detection or discrimination as a function of the difference in orientation between the two gratings. The three figures are for the (a) luminance, (b) L–M, or (c) S gratings: detection of which interval the grating was presented in (open circles), discrimination of the grating orientation (filled triangles).

Fig. 10
Fig. 10

Ratio of the discrimination to the detection contrast thresholds for the luminance (filled circles), L–M (open circles), or S gratings (open triangles): (a) results for subject MW, (b) results for subject SW.

Fig. 11
Fig. 11

Ratio of discrimination to detection contrast thresholds for a 30-deg orientation difference estimated from successive sessions: L–M gratings (open circles), S gratings (open triangles). The final two estimates for the L–M gratings were made with slightly revised estimates of the equiluminant balance of the colors. The observer was MW.

Fig. 12
Fig. 12

Contrast thresholds for detecting a luminance grating superimposed upon a near-threshold contrast, L–M chromatic grating, as a function of the luminance balance between the red and green components of the color grating: bright bars of the luminance grating superimposed upon green bars of the color grating (open circles), bright bars superimposed on red bars of color grating (filled circles). The cross point of the two curves represents an estimate of the luminance balance for the red and green colors.

Fig. 13
Fig. 13

Ratio of the discrimination to the detection contrast thresholds for the luminance (filled circles), L–M (open circles), or S (open triangles) gratings as a function of the difference in spatial frequency between the two gratings: (a) results for MW, (b) results for SW.

Fig. 14
Fig. 14

Results of simultaneous discrimination-detection task for different grating types for the probability of detecting in which interval the grating was presented (open circles) and the probability of correctly discriminating which type of grating was presented (closed triangles). Each point that is shown is based on 300 trials from three different sessions. The three figures are for the three possible pairs of gratings: (a) luminance versus L–M, (b) luminance versus S, (c) L–M versus S. The dashed curves represent the predicted discrimination performance for independent color and form systems with equal contrast thresholds (as explained in the text). The observer was MW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( discriminate color ) = 1 [ 1 P ( detect ) ] 0.5 .

Metrics