Abstract

A new technique has been developed for extracting both deformation and shape information from electronic speckle pattern interferometry fringes that involves a significant improvement in environmental stability and reduced computational effort. This new approach utilizes a single-phase-step technique to extract data and requires no additional optical components to produce a rapid analysis of static and dynamic fringe patterns. Continuous-wave, stroboscopic, and pulsed laser illumination are all amenable to this technique. Comparisons are made with similar phase-reduction techniques involving two and three phase steps. It is concluded that there is not a significant difference among these and hence that the new technique offers important practical advantages. Results are presented from the analysis of static and dynamic targets.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13–20 (1966).
    [CrossRef]
  2. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometry for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef] [PubMed]
  3. P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
    [CrossRef]
  4. S. Nakadate, H. Saito, “Fringe scanning speckle pattern interferometry,” Appl. Opt. 24, 2172–2180 (1985).
    [CrossRef] [PubMed]
  5. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985).
    [CrossRef] [PubMed]
  6. D. Robinson, D. Williams, “Digital phase stepping speckle interferometry,” Opt. Commun. 57, 26–30 (1986).
    [CrossRef]
  7. A. Maas, H. Vrooman, “Digital phase stepping speckle interferometry,” in Laser Technologies in Industry, O. D. D. Soares, ed., Proc. Soc. Photo-Opt. Instrum. Eng.952, 196–205 (1988).
  8. F. Mendoza Santoyo, D. Kerr, J. Tyrer, “Interferometric fringe analysis using a single step phase technique,” Appl. Opt. 27, 4362–4364 (1988).
    [CrossRef]
  9. F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
    [CrossRef]
  10. D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
    [CrossRef]
  11. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyc, K. Merkel, “Digital wave-front measuring interferometry: some systematic source errors,” Appl. Opt. 22, 3421–3432 (1983).
    [CrossRef] [PubMed]
  12. K. Kinnstaetter, A. Lohmann, J. Schwider, N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988).
    [CrossRef] [PubMed]

1989 (1)

D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
[CrossRef]

1988 (2)

1986 (1)

D. Robinson, D. Williams, “Digital phase stepping speckle interferometry,” Opt. Commun. 57, 26–30 (1986).
[CrossRef]

1985 (2)

1983 (1)

1982 (1)

P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

1974 (1)

1966 (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13–20 (1966).
[CrossRef]

Brangaccio, D. J.

Brown, N.

P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Bruning, J. H.

Burow, R.

Carré, P.

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13–20 (1966).
[CrossRef]

Creath, K.

Elssner, K. E.

Gallagher, J. E.

Grzanna, J.

Hariharan, P.

P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Herriott, D. R.

Kerr, D.

D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
[CrossRef]

F. Mendoza Santoyo, D. Kerr, J. Tyrer, “Interferometric fringe analysis using a single step phase technique,” Appl. Opt. 27, 4362–4364 (1988).
[CrossRef]

F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
[CrossRef]

Kinnstaetter, K.

Lohmann, A.

Maas, A.

A. Maas, H. Vrooman, “Digital phase stepping speckle interferometry,” in Laser Technologies in Industry, O. D. D. Soares, ed., Proc. Soc. Photo-Opt. Instrum. Eng.952, 196–205 (1988).

Merkel, K.

Nakadate, S.

Oreb, B.

P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

Robinson, D.

D. Robinson, D. Williams, “Digital phase stepping speckle interferometry,” Opt. Commun. 57, 26–30 (1986).
[CrossRef]

Rosenfeld, D. P.

Saito, H.

Santoyo, F. Mendoza

D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
[CrossRef]

F. Mendoza Santoyo, D. Kerr, J. Tyrer, “Interferometric fringe analysis using a single step phase technique,” Appl. Opt. 27, 4362–4364 (1988).
[CrossRef]

F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
[CrossRef]

Schwider, J.

Spolaczyc, R.

Streibl, N.

Tyrer, J.

D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
[CrossRef]

F. Mendoza Santoyo, D. Kerr, J. Tyrer, “Interferometric fringe analysis using a single step phase technique,” Appl. Opt. 27, 4362–4364 (1988).
[CrossRef]

F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
[CrossRef]

Vrooman, H.

A. Maas, H. Vrooman, “Digital phase stepping speckle interferometry,” in Laser Technologies in Industry, O. D. D. Soares, ed., Proc. Soc. Photo-Opt. Instrum. Eng.952, 196–205 (1988).

West, T.

F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
[CrossRef]

White, A. D.

Williams, D.

D. Robinson, D. Williams, “Digital phase stepping speckle interferometry,” Opt. Commun. 57, 26–30 (1986).
[CrossRef]

Appl. Opt. (6)

J. Mod. Opt. (1)

D. Kerr, F. Mendoza Santoyo, J. Tyrer, “Manipulation of the Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–204 (1989).
[CrossRef]

Metrologia (1)

P. Carré, “Installation et utilisation du compateur photoelectrique et interferential du Bureau International des Poids et Mesures,” Metrologia 2, 13–20 (1966).
[CrossRef]

Opt. Commun. (2)

P. Hariharan, B. Oreb, N. Brown, “A digital phase measurement system for real-time holographic interferometry,” Opt. Commun. 41, 393–396 (1982).
[CrossRef]

D. Robinson, D. Williams, “Digital phase stepping speckle interferometry,” Opt. Commun. 57, 26–30 (1986).
[CrossRef]

Other (2)

A. Maas, H. Vrooman, “Digital phase stepping speckle interferometry,” in Laser Technologies in Industry, O. D. D. Soares, ed., Proc. Soc. Photo-Opt. Instrum. Eng.952, 196–205 (1988).

F. Mendoza Santoyo, J. Tyrer, T. West, D. Kerr, “Vibration analysis using phase stepped double pulsed electronic speckle pattern interferometry,” in Stress and Vibration: Recent Developments in Industrial Measurement and Analysis, P. Stanley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1084, 262–278 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical and electronic arrangement of the ESPI in the subtraction mode.

Fig. 2
Fig. 2

Phase data from computer-generated sine waves. Top: sine waves stepped by π/2 rad. Bottom: phase ramp generated by single-step algorithm.

Fig. 3
Fig. 3

Phase fringes from ESPI subtraction contour data. Top: ESPI subtraction fringes stepped by π/2 rad. Bottom: phase fringes generated by single-step algorithm.

Fig. 4
Fig. 4

Pulsed Nd:YAG ESPI vibration fringes. Top: raw data from target vibrating at υ = 1, 2 kHz. Bottom left: Fourier filter mask. Bottom right: single-phase-step map.

Fig. 5
Fig. 5

Sigma (SD of difference from control phase data) versus parameter of interest for one-, two-, and three-step phase-extraction processes, (a) Effect of reduced fringe visibility on phase extracted from computer-generated sine wave data, (b) Effect of reduced SNR on phase extracted from computer-generated sine wave data, (c) Effect of error in phase step on phase extracted from computer-generated sine wave data, (d) Effect of reduced fringe visibility on phase extracted from live ESPI fringe data. (e) Effect of reduced SNR on phase extracted from live ESPI fringe data.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 = I o + I r + 2 cos ( θ ) I o I r ,
I 2 = I o + I r + 2 cos ( θ + ϕ ) I o I r ,
I sub = I 1 I 2 = 2 I o I r [ cos ( θ ) cos ( θ + ϕ ) ] ,
I add = I 1 + I 2 = 2 ( I o + I r ) + 2 I o I r [ cos ( θ ) + cos ( θ + ϕ ) ] .
I add + filtered = I 1 + I 2 = 2 I o I r [ cos ( θ ) + cos ( θ + ϕ ) ] ,
I ( 0 ) = C cos ( θ ) C cos ( θ + ϕ ) , I ( π / 2 ) = C cos ( θ ) C cos ( θ + ϕ π / 2 ) ( C = 2 I o I r )
ϕ ( x , y ) = tan 1 ( I ( π / 2 ) / I ( 0 ) ) ,
I g ( x , y ) = I g ( x , y ) + A I g ( x , y ) N z ,
I g ( x , y ) = I g ( x , y ) + A [ I g ( x , y ) + I n ] N z ,

Metrics