Abstract

When an observer’s ability to discriminate colored objects is estimated from the variability in color matches, the observer inspects adjacent visual fields carefully and makes considered judgments. Color discrimination does not always take place under such viewing conditions. When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. We compare color-discrimination thresholds by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Robertson, “The CIE 1976 color-difference formulae,” Col. Res. Appl. 2, 7–11 (1977).
  2. Commission Internationale de l’Eclairage, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms (Bureau Central de la CIE, Paris, 1978).
  3. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942).
    [CrossRef]
  4. W. R. J. Brown, D. L. MacAdam, “Visual sensitivities to combined chromaticity and luminance differences,” J. Opt. Soc. Am. 39, 808–834 (1949).
    [CrossRef] [PubMed]
  5. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41, 684–688 (1951).
    [CrossRef] [PubMed]
  6. W. R. J. Brown, “Color discrimination of twelve observers,” J. Opt. Soc. Am. 47, 137–143 (1957).
    [CrossRef] [PubMed]
  7. R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
    [CrossRef]
  8. A. M. Treisman, “Preattentive processing in vision,” Comput. Vision Graphics Image Process. 31, 156–177 (1985).
    [CrossRef]
  9. D. H. Brainard, “Calibration of a computer controlled color monitor,” Col. Res. Appl. 14, 23–24 (1989).
    [CrossRef]
  10. V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  11. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979), p. 404.
  12. A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  13. J. Nachmias, E. C. Kocher, “Visual detection and discrimination of luminance increments,” J. Opt. Soc. Am. 60, 382–389 (1970).
    [CrossRef] [PubMed]
  14. C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc.Am. 73, 1533–1543 (1983).
    [CrossRef] [PubMed]
  15. A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
    [CrossRef] [PubMed]
  16. H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  17. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
    [CrossRef] [PubMed]
  18. G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am 61, 1135–1151 (1971).
    [CrossRef] [PubMed]
  19. D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
    [CrossRef]
  20. R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, B. R. Wooten, ed. (Academic, New York, 1978).
    [CrossRef]

1990 (2)

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

1989 (1)

D. H. Brainard, “Calibration of a computer controlled color monitor,” Col. Res. Appl. 14, 23–24 (1989).
[CrossRef]

1985 (1)

A. M. Treisman, “Preattentive processing in vision,” Comput. Vision Graphics Image Process. 31, 156–177 (1985).
[CrossRef]

1983 (1)

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc.Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

1981 (1)

D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef]

1979 (1)

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

1977 (2)

R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[CrossRef]

A. R. Robertson, “The CIE 1976 color-difference formulae,” Col. Res. Appl. 2, 7–11 (1977).

1975 (1)

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1971 (2)

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am 61, 1135–1151 (1971).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1970 (1)

1957 (1)

1951 (1)

1949 (1)

1942 (1)

Boynton, R. M.

R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[CrossRef]

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979), p. 404.

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, B. R. Wooten, ed. (Academic, New York, 1978).
[CrossRef]

Brainard, D. H.

Brown, W. R. J.

Fielder, G. H.

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am 61, 1135–1151 (1971).
[CrossRef] [PubMed]

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Hayhoe, M.

D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef]

Hayhoe, M. M.

R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[CrossRef]

King-Smith, P. E.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

Kocher, E. C.

Koenderink, J. J.

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc.Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

Kranda, K.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

MacAdam, D. L.

MacLeod, D. I. A.

D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef]

R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[CrossRef]

Nachmias, J.

Noorlander, C.

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc.Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

Poirson, A. B.

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

Pokorny, J.

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Robertson, A. R.

A. R. Robertson, “The CIE 1976 color-difference formulae,” Col. Res. Appl. 2, 7–11 (1977).

Smith, V.

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Treisman, A. M.

A. M. Treisman, “Preattentive processing in vision,” Comput. Vision Graphics Image Process. 31, 156–177 (1985).
[CrossRef]

Varner, D. C.

Wandell, B. A.

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

Williams, D.

D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef]

Wyszecki, G.

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am 61, 1135–1151 (1971).
[CrossRef] [PubMed]

Col. Res. Appl. (2)

A. R. Robertson, “The CIE 1976 color-difference formulae,” Col. Res. Appl. 2, 7–11 (1977).

D. H. Brainard, “Calibration of a computer controlled color monitor,” Col. Res. Appl. 14, 23–24 (1989).
[CrossRef]

Comput. Vision Graphics Image Process. (1)

A. M. Treisman, “Preattentive processing in vision,” Comput. Vision Graphics Image Process. 31, 156–177 (1985).
[CrossRef]

J. Opt. Soc. Am (1)

G. Wyszecki, G. H. Fielder, “New color-matching ellipses,” J. Opt. Soc. Am 61, 1135–1151 (1971).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (1)

J. Opt. Soc.Am. (1)

C. Noorlander, J. J. Koenderink, “Spatial and temporal discrimination ellipsoids in color space,” J. Opt. Soc.Am. 73, 1533–1543 (1983).
[CrossRef] [PubMed]

Opt. Acta (1)

R. M. Boynton, M. M. Hayhoe, D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” Opt. Acta 24, 159–177 (1977).
[CrossRef]

Science (1)

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Vision Res. (4)

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–746 (1979).
[CrossRef] [PubMed]

D. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef]

A. B. Poirson, B. A. Wandell, “The ellipsoidal representation of spectral sensitivity,” Vision Res. 30, 647–652 (1990).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Other (3)

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979), p. 404.

Commission Internationale de l’Eclairage, Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms (Bureau Central de la CIE, Paris, 1978).

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics and Physiology, B. R. Wooten, ed. (Academic, New York, 1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Possible object positions. The target and distractor items were presented at one of the grid points. The central point always fell within the central square, indicated by a dark solid line. The distractor grid surrounded the central point. See the text for further details.

Fig. 2
Fig. 2

Linear estimate of d′ versus vector difference for two color directions. The points are d′ calculated at vector-difference lengths that had ten or more signal trials. The lines are the weighted, linear least-squares fit. The weighting of each data point is the square root of the number of trials at that level.

Fig. 3
Fig. 3

Frequency distribution of the lengths of the data points in the coordinate frame in which the data fall closest to a sphere of radius one.

Fig. 4
Fig. 4

Thresholds and ellipsoidal cross-sections fitted in the three color planes used in collecting data. Data are from near-fovea trials, distractor grid 3 × 3, observer AF, and distractor color location (1.71,1.48, 1. 96). The value of E for this data set is 0.11.

Fig. 5
Fig. 5

Spectral sensitivity derived from ellipsoidal fit to data collected by observer AF (shown in Fig. 4).

Fig. 6
Fig. 6

Comparison of the near-fovea data (filled diamonds) and far-fovea data (open circles); subject TG. The distractor color location was (1.71, 1.48, 1.96), and the distractor grid was 3 × 3. The smooth curves are the cross sections of the best-fitting, three-dimensional ellipsoid calculated using all the points. The calculation of these fits was constrained so that the two ellipsoids are scaled copies of each other. The root-mean-squared error E of the ellipsoidal fit to the data is 0.195 for the near-fovea data and 0.229 for the far-fovea data. The scaling factor for these data is 1.74.

Fig. 7
Fig. 7

Comparison of thresholds in the red-green receptor plane for a 3 × 3 distractor grid and a 7 × 7 distractor grid for two observers. The distractor color location was (1.71, 1.48, 1.96). The central position was in the near fovea. The crosses are data collected with the small distractor grid, and the boxes are data collected with a large distractor grid. The smooth curves are cross sections of the ellipsoidal fits to the data. The value of E for AF’s ellipsoidal fits is 0.11 and 0.18 for the small and large distractor grids, respectively. For observer TG the corresponding values are 0.19 and 0.21.

Fig. 8
Fig. 8

Color-matching and discrimination data for observer TG. (a) Color matches are projected onto the red–green receptor plane at color location (1.71,1.48,1.96); the smooth curve is the ellipse at one standard deviation for the trivariate normal fit to the data. (b) Threshold discriminability is shown for the near fovea, distractor grid 3 × 3, color location (1.71,1.48,1.96).

Fig. 9
Fig. 9

Spectral-sensitivity comparison for observer TG at three different locations in color space: cross, (1.71, 1.48, 1.96); box, (3.10, 2.65, 1.84); diamond, (4.81, 4.13, 3.80). (a) The spectral-sensitivity curves derived from the ellipsoids estimated from the color-matching variability. (b) The spectral-sensitivity curves derived from the ellipsoids estimated in our threshold discrimination task. These curves are near fovea, distractor grid size 3 × 3.

Tables (3)

Tables Icon

Table 1 Q Estimated from Discrimination Task at Distractor Color Location (1.71, 1.48, 1.96)

Tables Icon

Table 2 Q Estimated from Discrimination Task at Two Distractor Color Locationsa

Tables Icon

Table 3 Q Estimated from Color-Matching Task at Three Color Locationsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = ( 1 N n = 1 N e n 2 ) 1 / 2 ,

Metrics