Abstract

The discrete-dipole approximation is used to study the problem of light scattering by homogeneous rectangular particles. The structure of the discrete-dipole approximation is investigated, and the matrix formed by this approximation is identified to be a symmetric, block-Toeplitz matrix. Special properties of block-Toeplitz arrays are explored, and an efficient algorithm to solve the dipole scattering problem is provided. Timings for conjugate gradient, Linpack, and block-Toeplitz solvers are given; the results indicate the advantages of the block-Toeplitz algorithm. A practical test of the algorithm was performed on a system of 1400 dipoles, which corresponds to direct inversion of an 8400 × 8400 real matrix. A short discussion of the limitations of the discrete-dipole approximation is provided, and some results for cubes and parallelepipeds are given. We briefly consider how the algorithm may be improved further.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Discrete-Dipole Approximation For Scattering Calculations

Bruce T. Draine and Piotr J. Flatau
J. Opt. Soc. Am. A 11(4) 1491-1499 (1994)

Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization

Enrico Massa, Tyler Roschuk, Stefan A. Maier, and Vincenzo Giannini
J. Opt. Soc. Am. A 31(1) 135-140 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (107)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription