Abstract

Spectral unique hues (blue, green, and yellow) were determined for 50 observers ranging in age from 13 to 74 years. Each unique hue was measured at three luminance levels (0.5-log-unit steps). There were no significant changes in the spectral locations of red–green equilibrium hues (unique blue and yellow) as a function of luminance level or age. In contrast, significant shifts in unique green loci occurred as a function of both age and luminance. Unique green loci shifted toward shorter wavelengths with age. These results are consistent with the hypothesis that with advancing age there is a parallel decline in the input of all three cone types to the red–green chromatic channel and either a selective decline in short-wave-sensitive cone input to the yellow–blue chromatic channel or a change in the way in which cone signals are combined within the yellow–blue channel.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich, D. Jameson (Harvard U. Press, Cambridge, Mass., 1964).
  2. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc.Am. 45, 546–552 (1955).
    [Crossref]
  3. D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone pigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
    [Crossref]
  4. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [Crossref] [PubMed]
  5. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [Crossref] [PubMed]
  6. C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [Crossref] [PubMed]
  7. M. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Vision Res. 18, 1521–1532 (1978).
    [Crossref] [PubMed]
  8. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
    [Crossref] [PubMed]
  9. K. Knoblauch, L. Sirovich, B. R. Wooten, “Linearity of hue cancellation in sex-linked dichromacy,” J. Opt. Soc. Am. A 2, 136–146 (1985).
    [Crossref] [PubMed]
  10. Y. Ejima, S. Takahashi, “Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity,” Vision Res. 25, 1911–1922 (1985).
    [Crossref] [PubMed]
  11. B. Drum, “Hue signals from short- and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–157 (1989).
    [Crossref] [PubMed]
  12. D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [Crossref]
  13. L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–202 (1951).
    [Crossref] [PubMed]
  14. A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
    [Crossref] [PubMed]
  15. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [Crossref] [PubMed]
  16. M. Ayama, T. Nakatsue, P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000 Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
    [Crossref] [PubMed]
  17. M. Ikeda, M. Ayama, “Additivity of opponent-chromatic valence,” Vision Res. 20, 995–999 (1980).
    [Crossref]
  18. C. H. Elzinga, C. M. M. De Weert, “Nonlinear codes for the yellow/blue mechanism,” Vision Res. 24, 911–922 (1984).
    [Crossref] [PubMed]
  19. A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).
  20. G. Haegerstrom-Portnoy, S. E. Hewlett, S. A. N. Barr, “S cone loss with aging,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 345–352.
    [Crossref]
  21. J. S. Werner, V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
    [Crossref] [PubMed]
  22. C. A. Johnson, A. J. Adams, J. D. Twelker, J. M. Quigg, “Age-related changes of the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988).
    [Crossref] [PubMed]
  23. A. Eisner, “Comparison of flicker-photometric and flicker-threshold spectral sensitivities while the eye is adapted to colored backgrounds,” J. Opt. Soc. Am. 72, 517–518 (1982).
    [Crossref] [PubMed]
  24. F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
    [Crossref] [PubMed]
  25. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247–258 (1982).
    [Crossref] [PubMed]
  26. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
    [PubMed]
  27. D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
    [Crossref] [PubMed]
  28. D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
    [Crossref] [PubMed]
  29. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  30. L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
    [Crossref]
  31. F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
    [Crossref]
  32. S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).
  33. M. I. Rubin, “Spectral hue loci of normal and anomalous trichromates,” Am. J. Ophthalmol. 52, 166–172 (1961).
    [PubMed]
  34. W. Richards, “Differences among color normals: classes I and II,” J. Opt. Soc. Am. 57, 1047–1055 (1967).
    [Crossref] [PubMed]
  35. L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
    [Crossref]
  36. G. H. Jacobs, T. C. Wascher, “Bezold–Brücke hue shift: further measurements,” J. Opt. Soc. Am. 57, 1155–1156 (1967).
    [Crossref]
  37. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [Crossref] [PubMed]
  38. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [Crossref] [PubMed]
  39. C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe (to be published).
  40. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [Crossref] [PubMed]
  41. B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
    [Crossref]

1989 (2)

B. Drum, “Hue signals from short- and middle-wavelength-sensitive cones,” J. Opt. Soc. Am. A 6, 153–157 (1989).
[Crossref] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[Crossref] [PubMed]

1988 (3)

1987 (2)

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

M. Ayama, T. Nakatsue, P. K. Kaiser, “Constant hue loci of unique and binary balanced hues at 10, 100, and 1000 Td,” J. Opt. Soc. Am. A 4, 1136–1144 (1987).
[Crossref] [PubMed]

1986 (1)

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[Crossref]

1985 (2)

K. Knoblauch, L. Sirovich, B. R. Wooten, “Linearity of hue cancellation in sex-linked dichromacy,” J. Opt. Soc. Am. A 2, 136–146 (1985).
[Crossref] [PubMed]

Y. Ejima, S. Takahashi, “Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity,” Vision Res. 25, 1911–1922 (1985).
[Crossref] [PubMed]

1984 (2)

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

C. H. Elzinga, C. M. M. De Weert, “Nonlinear codes for the yellow/blue mechanism,” Vision Res. 24, 911–922 (1984).
[Crossref] [PubMed]

1982 (2)

1980 (1)

M. Ikeda, M. Ayama, “Additivity of opponent-chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref]

1979 (3)

A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
[Crossref] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

1978 (1)

M. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Vision Res. 18, 1521–1532 (1978).
[Crossref] [PubMed]

1977 (2)

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

1975 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

1974 (2)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref] [PubMed]

1971 (1)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

1968 (2)

L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone pigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
[Crossref]

1967 (3)

1965 (1)

S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).

1961 (1)

M. I. Rubin, “Spectral hue loci of normal and anomalous trichromates,” Am. J. Ophthalmol. 52, 166–172 (1961).
[PubMed]

1959 (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

1955 (1)

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc.Am. 45, 546–552 (1955).
[Crossref]

1951 (1)

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–202 (1951).
[Crossref] [PubMed]

1939 (1)

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

1931 (1)

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Adams, A. J.

Ayama, M.

Barr, S. A. N.

G. Haegerstrom-Portnoy, S. E. Hewlett, S. A. N. Barr, “S cone loss with aging,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 345–352.
[Crossref]

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Cicerone, C. M.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe (to be published).

Cohen, J. D.

L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

De Weert, C. M. M.

C. H. Elzinga, C. M. M. De Weert, “Nonlinear codes for the yellow/blue mechanism,” Vision Res. 24, 911–922 (1984).
[Crossref] [PubMed]

Dimmick, F. L.

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Drum, B.

Eisner, A.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

A. Eisner, “Comparison of flicker-photometric and flicker-threshold spectral sensitivities while the eye is adapted to colored backgrounds,” J. Opt. Soc. Am. 72, 517–518 (1982).
[Crossref] [PubMed]

Ejima, Y.

Y. Ejima, S. Takahashi, “Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity,” Vision Res. 25, 1911–1922 (1985).
[Crossref] [PubMed]

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Elzinga, C. H.

C. H. Elzinga, C. M. M. De Weert, “Nonlinear codes for the yellow/blue mechanism,” Vision Res. 24, 911–922 (1984).
[Crossref] [PubMed]

Fleming, S. A.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

Haegerstrom-Portnoy, G.

G. Haegerstrom-Portnoy, S. E. Hewlett, S. A. N. Barr, “S cone loss with aging,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 345–352.
[Crossref]

Harvey, L. O.

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[Crossref]

Hering, E.

E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich, D. Jameson (Harvard U. Press, Cambridge, Mass., 1964).

Hewlett, S. E.

G. Haegerstrom-Portnoy, S. E. Hewlett, S. A. N. Barr, “S cone loss with aging,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 345–352.
[Crossref]

Hubbard, M. R.

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Hurvich, L. M.

L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone pigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
[Crossref]

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc.Am. 45, 546–552 (1955).
[Crossref]

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–202 (1951).
[Crossref] [PubMed]

Ikeda, M.

M. Ikeda, M. Ayama, “Additivity of opponent-chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref]

Ingling, C. R.

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

Jacobs, G. H.

Jameson, D.

D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone pigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
[Crossref]

L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc.Am. 45, 546–552 (1955).
[Crossref]

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–202 (1951).
[Crossref] [PubMed]

Johnson, C. A.

Kaiser, P. K.

Klein, M. L.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

Knoblauch, K.

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Larimer, J.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Mauldin, W. M.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

Nagy, A. L.

A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
[Crossref] [PubMed]

Nakatsue, T.

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[Crossref] [PubMed]

Norren, D. V.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref] [PubMed]

Pokorny, J.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Purdy, D. McL.

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Quigg, J. M.

Richards, W.

Romeskie, M.

M. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Vision Res. 18, 1521–1532 (1978).
[Crossref] [PubMed]

Rubin, M. I.

M. I. Rubin, “Spectral hue loci of normal and anomalous trichromates,” Am. J. Ophthalmol. 52, 166–172 (1961).
[PubMed]

Said, F. S.

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Shapiro, S. S.

S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).

Sirovich, L.

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Steele, V. G.

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Takahashi, S.

Y. Ejima, S. Takahashi, “Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity,” Vision Res. 25, 1911–1922 (1985).
[Crossref] [PubMed]

Tsou, B. H.-P.

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref] [PubMed]

Twelker, J. D.

Vos, J. J.

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

Walraven, P. L.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

Wascher, T. C.

Weale, R. A.

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
[PubMed]

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Werner, J. S.

Wilk, M. B.

S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).

Wooten, B. R.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Am. J. Ophthalmol. (1)

M. I. Rubin, “Spectral hue loci of normal and anomalous trichromates,” Am. J. Ophthalmol. 52, 166–172 (1961).
[PubMed]

Am. J. Psychol. (2)

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

D. McL. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Behav. Res. Methods Instrum. Comput. (1)

L. O. Harvey, “Efficient estimation of sensory thresholds,” Behav. Res. Methods Instrum. Comput. 18, 623–632 (1986).
[Crossref]

Biometrika (1)

S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika 52, 591–611 (1965).

Gerontologia (1)

F. S. Said, R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia 3, 213–231 (1959).
[Crossref] [PubMed]

Invest. Ophthalmol. Vision Sci. (1)

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Vision Sci. 28, 1824–1831 (1987).

J. Opt. Soc. Am. (6)

J. Opt. Soc. Am. A (5)

J. Opt. Soc.Am. (1)

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc.Am. 45, 546–552 (1955).
[Crossref]

J. Physiol. (1)

R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
[PubMed]

Percept. Psychophys. (1)

L. M. Hurvich, D. Jameson, J. D. Cohen, “The experimental determination of unique green in the spectrum,” Percept. Psychophys. 4, 65–68 (1968).
[Crossref]

Science (1)

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–202 (1951).
[Crossref] [PubMed]

Vision Res. (15)

A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
[Crossref] [PubMed]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Additivity of opponent-chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref]

C. H. Elzinga, C. M. M. De Weert, “Nonlinear codes for the yellow/blue mechanism,” Vision Res. 24, 911–922 (1984).
[Crossref] [PubMed]

Y. Ejima, S. Takahashi, “Interaction between short- and longer-wavelength cones in hue cancellation codes: nonlinearities of hue cancellation as a function of stimulus intensity,” Vision Res. 25, 1911–1922 (1985).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity. II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. R. Ingling, B. H.-P. Tsou, “Orthogonal combination of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref] [PubMed]

M. Romeskie, “Chromatic opponent-response functions of anomalous trichromats,” Vision Res. 18, 1521–1532 (1978).
[Crossref] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[Crossref] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Fixation-light bias: an unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967).
[Crossref] [PubMed]

D. V. Norren, J. J. Vos, “Spectral transmission of the human ocular media,” Vision Res. 14, 1237–1244 (1974).
[Crossref] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

Other (4)

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

C. M. Cicerone, “Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis,” Farbe (to be published).

E. Hering, Outlines of a Theory of the Light Sense, translated by L. M. Hurvich, D. Jameson (Harvard U. Press, Cambridge, Mass., 1964).

G. Haegerstrom-Portnoy, S. E. Hewlett, S. A. N. Barr, “S cone loss with aging,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 345–352.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Response proportion as a function of wavelength for unique blue, green, and yellow. The data are from one subject; the solid curves illustrate the best-fitting logistic functions. The arrows denote the wavelengths associated with the 50% point of the logistic functions and correspond to the unique hue loci.

Fig. 2
Fig. 2

Wavelengths of unique blue plotted as a function of age. The upper, middle, and lower panels show the results from the high-, middle-, and low-luminance conditions, respectively. The parameters for the least-squares linear regression equations are presented in Table 1.

Fig. 3
Fig. 3

Wavelengths of unique yellow plotted as a function of age. The upper, middle, and lower panels show the results from the high-, middle-, and low-luminance conditions, respectively. The parameters for the least-squares linear regression equations are presented in Table 2.

Fig. 4
Fig. 4

Frequency histogram for the wavelength loci of unique blue obtained at 2.2 cd m−2 for the sample. The solid curve shows the expected normal distribution.

Fig. 5
Fig. 5

Frequency histogram for the wavelength loci of unique yellow obtained at 2.2 cd m−2 for the sample. The solid curve shows the expected normal distribution.

Fig. 6
Fig. 6

Wavelengths of unique green plotted as a function of age. The upper, middle, and lower panels show the results from the high-, middle-, and low-luminance conditions, respectively. The parameters for the least-squares linear regression equations are presented in Table 3.

Fig. 7
Fig. 7

Frequency histogram for the wavelength loci of unique green obtained at 2.2 cd m−2 for the sample. The unshaded and shaded areas represent unique green loci for subjects younger and older, respectively, than the median age (44.9 yr). The solid curve shows the expected normal distribution.

Tables (3)

Tables Icon

Table 1 Descriptive Statistics and Parameters of Linear Regression as a Function of Age for Unique Blue Locus

Tables Icon

Table 2 Descriptive Statistics and Parameters of Linear Regression as a Function of Age for Unique Yellow Locus

Tables Icon

Table 3 Descriptive Statistics and Parameters of Linear Regression as a Function of Age for Unique Green Locus

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( Y ) i = ( 1 + e n ) 1 , n = β * [ log e ( λ ) i log e ( Ω ) ] .
( r , g ) λ = k 1 α λ k 2 β λ + k 3 γ λ .
0 = k 2 β λ + k 3 γ λ .

Metrics