Abstract

We measured the sensitivity of macaque ganglion cells to luminance and chromatic sinusoidal modulation. Phasic ganglion cells of the magnocellular pathway (M-pathway) were the more sensitive to luminance modulation, and tonic ganglion cells of the parvocellular pathway (P-pathway) were more sensitive to chromatic modulation. With decreasing retinal illuminance, phasic ganglion cells’ temporal sensitivity to luminance modulation changed in a manner that paralleled psychophysical data. The same was true for tonic cells and chromatic modulation. Taken together, the data suggest strongly that the cells of the M-pathway form the physiological substrate for detection of luminance modulation and the cells of the P-pathway the substrate for detection of chromatic modulation. However, at high light levels, intrusion of a so-called luminance mechanism near 10 Hz in psychophysical detection of chromatic modulation is probably due to responses in the M-pathway, arising primarily from a nonlinearity of cone summation. Both phasic and tonic ganglion cells responded to frequencies higher than can be psychophysically detected. This suggests that central mechanisms, acting as low-pass filters, modify these cells’ signals, though the corner frequency is lower for the P-pathway than for the M-pathway. For both cell types, the response phase at different frequencies was consistent with the cells’ description as linear filters with a fixed time delay.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. de Lange, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light,” J. Opt. Soc. Am. 48, 777–784 (1958).
    [Crossref]
  2. D. H. Kelly, “Visual responses to time-dependent stimuli. I. Amplitude sensitivity measurements,” J. Opt. Soc. Am. 51, 422–429 (1961); reviewed in A. B. Watson, “Temporal sensitivity,” in Sensory Processes and Perception, Vol. I of Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Chap. 6.
    [Crossref]
  3. W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
    [Crossref] [PubMed]
  4. D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [Crossref] [PubMed]
  5. F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
    [PubMed]
  6. F. M. de Monasterio, “Properties of concentrically organized Xand Yganglion cells of macaque retina,” J. Neurophysiol. 41, 1394–1417 (1978).
    [PubMed]
  7. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  8. B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
    [PubMed]
  9. O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
    [Crossref] [PubMed]
  10. V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).
  11. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
    [PubMed]
  12. B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
    [PubMed]
  13. E. Kaplan, R. M. Shapley, “Xand Ycells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. 330, 125–144 (1982).
  14. T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
    [PubMed]
  15. J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
    [PubMed]
  16. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [PubMed]
  17. B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).
  18. B. B. Lee, P. R. Martin, “Macaque ganglion cells and the chromatic and luminance channels of psychophysics,” in Seeing Contour and Colour, J. Kulikowski, C. M. Dickinson, I. J. Murray, eds. (Pergamon, Oxford, 1989), pp. 21–35.
  19. D. G. Stork, D. S. Falk, “Temporal impulse responses from flicker sensitivities,” J. Opt. Soc. Am. A 4, 1130–1135 (1987).
    [Crossref] [PubMed]
  20. For details of the Judd observer and Smith–Pokorny fundamentals, see G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).
  21. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref] [PubMed]
  22. V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
    [PubMed]
  23. R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
    [Crossref]
  24. J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).
  25. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
    [PubMed]
  26. D. van Norren, P. Padmos, “Cone dark adaptation; influence of halothane anesthesia,” Invest. Ophthalmol. 14, 212–227 (1974).
  27. B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
    [Crossref]
  28. K.-I. Naka, W. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinada),” J. Physiol. 185, 536–555 (1966).
    [PubMed]
  29. E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cell with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
    [Crossref]
  30. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).
  31. P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
  32. B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
    [PubMed]
  33. P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
    [Crossref] [PubMed]
  34. V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
    [Crossref] [PubMed]
  35. A. Raninen, J. Rovamo, “Retinal ganglion-cell density and receptive-field size as determinants of photopic flicker sensitivity across the human visual field,” J. Opt. Soc. Am. A 4, 1620–1626 (1987).
    [Crossref] [PubMed]
  36. J. Rovamo, A. Raninen, “Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit–Harper and Ferry–Porter laws,” Vision Res. 28, 785–790 (1988).
    [Crossref]
  37. P. K. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
    [Crossref] [PubMed]
  38. Reviewed by A. B. Watson, “Temporal sensitivity,” in Sensory Processes and Perception, Vol. I of Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Chap. 6.
  39. L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
    [Crossref] [PubMed]
  40. C. Pulfrich, “Die Stereoskopie im Diensten der isochromen und heterochromen Photometric,” Naturwissenschaften 10, 533–564 (1922).
  41. B. J. Rogers, S. M. Anstis, “Intensity versus adaptation and the Pulfrich stereophenomenon,” Vision Res. 12, 909–928 (1972).
    [Crossref] [PubMed]
  42. W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
    [Crossref] [PubMed]
  43. G. Brindley, Physiology of the Retina and Visual Pathway (Arnold, London, 1960).
  44. W. H. Merigan, “Chromatic and achromatic vision in macaques; role of the P-pathway,” J. Neurosci. (to be published).
  45. V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
    [Crossref] [PubMed]
  46. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [Crossref] [PubMed]
  47. H. B. Barlow, W. R. Levick, “Three factors limiting the reliable detection of light by retinal ganglion cells of the cat,” J. Physiol. 200, 1–24 (1969).
    [PubMed]
  48. L. A. Riggs, P. Whittle, “Human occipital and retinal potentials evoked by subjectively faded stimuli,” Vision Res. 7, 441–451 (1967).
    [Crossref] [PubMed]
  49. D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity; psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
    [Crossref] [PubMed]
  50. D. H. Kelly, H. R. Wilson, “Human flicker sensitivity; two stages of retinal diffusion,” Science 202, 896–899 (1978).
    [Crossref] [PubMed]

1990 (1)

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

1989 (4)

B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
[PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).

1988 (2)

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
[PubMed]

J. Rovamo, A. Raninen, “Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit–Harper and Ferry–Porter laws,” Vision Res. 28, 785–790 (1988).
[Crossref]

1987 (7)

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

D. G. Stork, D. S. Falk, “Temporal impulse responses from flicker sensitivities,” J. Opt. Soc. Am. A 4, 1130–1135 (1987).
[Crossref] [PubMed]

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[Crossref] [PubMed]

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

A. Raninen, J. Rovamo, “Retinal ganglion-cell density and receptive-field size as determinants of photopic flicker sensitivity across the human visual field,” J. Opt. Soc. Am. A 4, 1620–1626 (1987).
[Crossref] [PubMed]

1986 (2)

P. K. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
[Crossref] [PubMed]

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cell with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref]

1984 (3)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).

V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
[Crossref] [PubMed]

1983 (2)

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
[PubMed]

1982 (1)

E. Kaplan, R. M. Shapley, “Xand Ycells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. 330, 125–144 (1982).

1980 (1)

J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).

1979 (3)

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[Crossref] [PubMed]

O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
[Crossref] [PubMed]

1978 (2)

F. M. de Monasterio, “Properties of concentrically organized Xand Yganglion cells of macaque retina,” J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

D. H. Kelly, H. R. Wilson, “Human flicker sensitivity; two stages of retinal diffusion,” Science 202, 896–899 (1978).
[Crossref] [PubMed]

1977 (1)

1976 (3)

B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
[PubMed]

D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity; psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[Crossref] [PubMed]

1975 (1)

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
[PubMed]

1974 (2)

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

D. van Norren, P. Padmos, “Cone dark adaptation; influence of halothane anesthesia,” Invest. Ophthalmol. 14, 212–227 (1974).

1972 (2)

B. J. Rogers, S. M. Anstis, “Intensity versus adaptation and the Pulfrich stereophenomenon,” Vision Res. 12, 909–928 (1972).
[Crossref] [PubMed]

W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
[Crossref] [PubMed]

1969 (1)

H. B. Barlow, W. R. Levick, “Three factors limiting the reliable detection of light by retinal ganglion cells of the cat,” J. Physiol. 200, 1–24 (1969).
[PubMed]

1967 (1)

L. A. Riggs, P. Whittle, “Human occipital and retinal potentials evoked by subjectively faded stimuli,” Vision Res. 7, 441–451 (1967).
[Crossref] [PubMed]

1966 (3)

K.-I. Naka, W. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinada),” J. Physiol. 185, 536–555 (1966).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

1961 (1)

1958 (1)

1922 (1)

C. Pulfrich, “Die Stereoskopie im Diensten der isochromen und heterochromen Photometric,” Naturwissenschaften 10, 533–564 (1922).

Anstis, S. M.

B. J. Rogers, S. M. Anstis, “Intensity versus adaptation and the Pulfrich stereophenomenon,” Vision Res. 12, 909–928 (1972).
[Crossref] [PubMed]

Ayama, M.

Barlow, H. B.

H. B. Barlow, W. R. Levick, “Three factors limiting the reliable detection of light by retinal ganglion cells of the cat,” J. Physiol. 200, 1–24 (1969).
[PubMed]

Baron, W. S.

D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity; psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

Baylor, D. A.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Bowen, R. W.

V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
[Crossref] [PubMed]

Bowmaker, J. K.

J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).

Boynton, R. M.

D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity; psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

Brindley, G.

G. Brindley, Physiology of the Retina and Visual Pathway (Arnold, London, 1960).

Carden, D.

Cleland, B. G.

W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
[Crossref] [PubMed]

Coombs, J. S.

W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
[Crossref] [PubMed]

Cowey, A.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).

Creutzfeldt, O. D.

O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
[Crossref] [PubMed]

Crook, J. M.

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

Dartnall, H. J. A.

J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).

de Lange, H.

de Monasterio, F. M.

F. M. de Monasterio, “Properties of concentrically organized Xand Yganglion cells of macaque retina,” J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
[PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

DeValois, R. L.

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

Dreher, B.

B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
[PubMed]

Elepfandt, A.

O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
[Crossref] [PubMed]

Enroth-Cugell, C.

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

Falk, D. S.

Freeman, A. W.

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

Frishman, L. J.

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

Fukuda, Y.

B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
[PubMed]

Gouras, P.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
[PubMed]

Hicks, T. P.

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
[PubMed]

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Hull, E. M.

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

Kaiser, P. K.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

P. K. Kaiser, M. Ayama, R. L. P. Vimal, “Flicker photometry: residual minimum flicker,” J. Opt. Soc. Am. A 3, 1989–1993 (1986).
[Crossref] [PubMed]

Kaplan, E.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cell with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref]

E. Kaplan, R. M. Shapley, “Xand Ycells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. 330, 125–144 (1982).

Kelly, D. H.

King-Smith, P. E.

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Lee, B. B.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
[PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
[PubMed]

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
[PubMed]

O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
[Crossref] [PubMed]

B. B. Lee, P. R. Martin, “Macaque ganglion cells and the chromatic and luminance channels of psychophysics,” in Seeing Contour and Colour, J. Kulikowski, C. M. Dickinson, I. J. Murray, eds. (Pergamon, Oxford, 1989), pp. 21–35.

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Levick, W. R.

W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
[Crossref] [PubMed]

H. B. Barlow, W. R. Levick, “Three factors limiting the reliable detection of light by retinal ganglion cells of the cat,” J. Physiol. 200, 1–24 (1969).
[PubMed]

Martin, P. R.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
[PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
[PubMed]

B. B. Lee, P. R. Martin, “Macaque ganglion cells and the chromatic and luminance channels of psychophysics,” in Seeing Contour and Colour, J. Kulikowski, C. M. Dickinson, I. J. Murray, eds. (Pergamon, Oxford, 1989), pp. 21–35.

Mead, W. R.

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

Merigan, W. H.

W. H. Merigan, “Chromatic and achromatic vision in macaques; role of the P-pathway,” J. Neurosci. (to be published).

Mollon, J. D.

J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).

Morgan, H. C.

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

Naka, K.-I.

K.-I. Naka, W. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinada),” J. Physiol. 185, 536–555 (1966).
[PubMed]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Oehler, R.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).

Padmos, P.

D. van Norren, P. Padmos, “Cone dark adaptation; influence of halothane anesthesia,” Invest. Ophthalmol. 14, 212–227 (1974).

Perry, V. H.

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).

Poison, M. C.

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

Pokorny, J.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[Crossref] [PubMed]

V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
[Crossref] [PubMed]

Pulfrich, C.

C. Pulfrich, “Die Stereoskopie im Diensten der isochromen und heterochromen Photometric,” Naturwissenschaften 10, 533–564 (1922).

Raninen, A.

J. Rovamo, A. Raninen, “Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit–Harper and Ferry–Porter laws,” Vision Res. 28, 785–790 (1988).
[Crossref]

A. Raninen, J. Rovamo, “Retinal ganglion-cell density and receptive-field size as determinants of photopic flicker sensitivity across the human visual field,” J. Opt. Soc. Am. A 4, 1620–1626 (1987).
[Crossref] [PubMed]

Riggs, L. A.

L. A. Riggs, P. Whittle, “Human occipital and retinal potentials evoked by subjectively faded stimuli,” Vision Res. 7, 441–451 (1967).
[Crossref] [PubMed]

Rodieck, R. W.

B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
[PubMed]

Rogers, B. J.

B. J. Rogers, S. M. Anstis, “Intensity versus adaptation and the Pulfrich stereophenomenon,” Vision Res. 12, 909–928 (1972).
[Crossref] [PubMed]

Rovamo, J.

J. Rovamo, A. Raninen, “Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit–Harper and Ferry–Porter laws,” Vision Res. 28, 785–790 (1988).
[Crossref]

A. Raninen, J. Rovamo, “Retinal ganglion-cell density and receptive-field size as determinants of photopic flicker sensitivity across the human visual field,” J. Opt. Soc. Am. A 4, 1620–1626 (1987).
[Crossref] [PubMed]

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[Crossref] [PubMed]

Rushton, W. H.

K.-I. Naka, W. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinada),” J. Physiol. 185, 536–555 (1966).
[PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

Schweitzer-Tong, D. E.

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

Shapley, R. M.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cell with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref]

E. Kaplan, R. M. Shapley, “Xand Ycells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. 330, 125–144 (1982).

Smith, V. C.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

W. H. Swanson, T. Ueno, V. C. Smith, J. Pokorny, “Temporal modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987).
[Crossref] [PubMed]

V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
[Crossref] [PubMed]

Stiles, W. S.

For details of the Judd observer and Smith–Pokorny fundamentals, see G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Stork, D. G.

Swanson, W. H.

Tigwell, D. A.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

Troy, J. B.

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

Tryti, J.

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

Ueno, T.

Valberg, A.

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
[PubMed]

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

van Norren, D.

D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[Crossref] [PubMed]

D. van Norren, P. Padmos, “Cone dark adaptation; influence of halothane anesthesia,” Invest. Ophthalmol. 14, 212–227 (1974).

Vidyasagar, T. R.

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
[PubMed]

Vimal, R. L. P.

Virsu, V.

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[Crossref] [PubMed]

Watson, A. B.

Reviewed by A. B. Watson, “Temporal sensitivity,” in Sensory Processes and Perception, Vol. I of Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Chap. 6.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Whittle, P.

L. A. Riggs, P. Whittle, “Human occipital and retinal potentials evoked by subjectively faded stimuli,” Vision Res. 7, 441–451 (1967).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Wilson, H. R.

D. H. Kelly, H. R. Wilson, “Human flicker sensitivity; two stages of retinal diffusion,” Science 202, 896–899 (1978).
[Crossref] [PubMed]

Wyszecki, G.

For details of the Judd observer and Smith–Pokorny fundamentals, see G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Zrenner, E.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

Exp. Brain Res. (2)

O. D. Creutzfeldt, B. B. Lee, A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979).
[Crossref] [PubMed]

V. Virsu, J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475–494 (1979).
[Crossref] [PubMed]

Invest. Ophthalmol. (1)

D. van Norren, P. Padmos, “Cone dark adaptation; influence of halothane anesthesia,” Invest. Ophthalmol. 14, 212–227 (1974).

Invest. Ophthalmol. Vis. Sci. (1)

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells on changing the relative phase of two flickering lights,” Invest. Ophthalmol. Vis. Sci. 30, 323 (1989).

J. Gen. Physiol. (1)

L. J. Frishman, A. W. Freeman, J. B. Troy, D. E. Schweitzer-Tong, C. Enroth-Cugell, “Spatiotemporal frequency responses of cat retinal ganglion cells,” J. Gen. Physiol. 89, 599–628 (1987).
[Crossref] [PubMed]

J. Neurophysiol. (3)

V. Virsu, B. B. Lee, “Light adaptation in cells of the macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
[PubMed]

F. M. de Monasterio, “Properties of concentrically organized Xand Yganglion cells of macaque retina,” J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

J. Neurosci. (1)

B. B. Lee, P. R. Martin, A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433–1442 (1989).
[PubMed]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (4)

J. Physiol. (14)

P. K. Kaiser, B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of the minimally distinct border method demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).

B. B. Lee, P. R. Martin, A. Valberg, “Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli,” J. Physiol. 414, 245–263 (1989).
[PubMed]

J. K. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Microspectrophotometric demonstration of four classes of photoreceptor in an old-world primate, Macaca fascicularis,” J. Physiol. 298, 131–143 (1980).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. 390, 145–160 (1987).
[PubMed]

K.-I. Naka, W. H. Rushton, “S-potentials from colour units in the retina of fish (Cyprinada),” J. Physiol. 185, 536–555 (1966).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
[PubMed]

E. Kaplan, R. M. Shapley, “Xand Ycells in the lateral geniculate nucleus of the macaque monkey,” J. Physiol. 330, 125–144 (1982).

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
[PubMed]

J. M. Crook, B. B. Lee, D. A. Tigwell, A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

B. B. Lee, P. R. Martin, A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 323–243 (1989).

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
[PubMed]

B. Dreher, Y. Fukuda, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–453 (1976).
[PubMed]

H. B. Barlow, W. R. Levick, “Three factors limiting the reliable detection of light by retinal ganglion cells of the cat,” J. Physiol. 200, 1–24 (1969).
[PubMed]

Naturwissenschaften (1)

C. Pulfrich, “Die Stereoskopie im Diensten der isochromen und heterochromen Photometric,” Naturwissenschaften 10, 533–564 (1922).

Neuroscience (1)

V. H. Perry, R. Oehler, A. Cowey, “Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey,” Neuroscience 12, 1110–1123 (1984).

Proc. Natl. Acad. Sci. USA (1)

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cell with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[Crossref]

Proc. R. Soc. London Ser. B (1)

B. B. Lee, A. Valberg, D. A. Tigwell, J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. London Ser. B 230, 293–314 (1987).
[Crossref]

Science (3)

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

D. H. Kelly, R. M. Boynton, W. S. Baron, “Primate flicker sensitivity; psychophysics and electrophysiology,” Science 194, 1077–1079 (1976).
[Crossref] [PubMed]

D. H. Kelly, H. R. Wilson, “Human flicker sensitivity; two stages of retinal diffusion,” Science 202, 896–899 (1978).
[Crossref] [PubMed]

Vision Res. (7)

L. A. Riggs, P. Whittle, “Human occipital and retinal potentials evoked by subjectively faded stimuli,” Vision Res. 7, 441–451 (1967).
[Crossref] [PubMed]

B. J. Rogers, S. M. Anstis, “Intensity versus adaptation and the Pulfrich stereophenomenon,” Vision Res. 12, 909–928 (1972).
[Crossref] [PubMed]

W. R. Levick, B. G. Cleland, J. S. Coombs, “On the apparent orbit of the Pulfrich pendulum,” Vision Res. 12, 1381–1388 (1972).
[Crossref] [PubMed]

V. C. Smith, R. W. Bowen, J. Pokorny, “Threshold temporal integration of chromatic stimuli,” Vision Res. 24, 653–659 (1984).
[Crossref] [PubMed]

J. Rovamo, A. Raninen, “Critical flicker frequency as a function of stimulus area and luminance at various eccentricities in human cone vision: a revision of Granit–Harper and Ferry–Porter laws,” Vision Res. 28, 785–790 (1988).
[Crossref]

R. L. DeValois, H. C. Morgan, M. C. Poison, W. R. Mead, E. M. Hull, “Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests,” Vision Res. 14, 53–67 (1974).
[Crossref]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Other (5)

For details of the Judd observer and Smith–Pokorny fundamentals, see G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

B. B. Lee, P. R. Martin, “Macaque ganglion cells and the chromatic and luminance channels of psychophysics,” in Seeing Contour and Colour, J. Kulikowski, C. M. Dickinson, I. J. Murray, eds. (Pergamon, Oxford, 1989), pp. 21–35.

Reviewed by A. B. Watson, “Temporal sensitivity,” in Sensory Processes and Perception, Vol. I of Handbook of Perception and Human Performance, K. R. Boff, L. Kaufman, J. P. Thomas, eds. (Wiley, New York, 1986), Chap. 6.

G. Brindley, Physiology of the Retina and Visual Pathway (Arnold, London, 1960).

W. H. Merigan, “Chromatic and achromatic vision in macaques; role of the P-pathway,” J. Neurosci. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Amplitude of first harmonic from Fourier analysis of peristimulus time histograms at three temporal frequencies: A, on-center phasic ganglion cell as a function of luminance modulation; B, tonic ganglion cell for luminance and chromatic modulation. Modulation was calculated as for Michelson contrast as described in the methods section. Solid curves indicate Naka–Rushton functions fitted by using least-squares nonlinear regression, provided that a criterion of 10 impulses/sec was exceeded. They describe the data satisfactorily.

Fig. 2
Fig. 2

First- and second-harmonic components of phasic on-center cell response at two frequencies: A, chromatic-modulation function; B, luminance-modulation function. In the former case, the second harmonic is dominant; in the latter, the first harmonic. Solid curves are Naka–Rushton fitted curves.

Fig. 3
Fig. 3

Sensitivity of ganglion cells to luminance modulation, expressed in terms of amplitude sensitivity [4000/(LmaxLmin)] and Michelson contrast sensitivity and contrast gain, as a function of frequency at four retinal illuminances: A, phasic cells; B, tonic cells. Sensitivity was estimated from the modulation required to evoke a 20-impulses/sec modulation, that is, 10-impulses/sec in first harmonic. In the upper panels, a value of unity (100) represents a modulation amplitude at criterion of 4000 Td (peak to peak). In the lower panels, sensitivity is expressed as the luminance contrast required to reach the criterion and also as contrast gain; this is the slope of the initial segment of the curves in Fig. 1. Note that retinal illuminance in the monkey eye is probably approximately 1.7 times the values quoted here. Means and standard deviations were derived from usually at least 10, and always at least 5, cells. All cells measured under a given condition were included. Tonic cells rarely responded to luminance modulation at 2 or 20 Td (imp, impulses).

Fig. 4
Fig. 4

Sensitivity of ganglion cells to chromatic modulation, expressed in terms of amplitude sensitivity (top) and modulation sensitivity (bottom), as a function of frequency at retinal illuminances indicated: A, phasic cells; B, tonic cells. In responses of most phasic cells the second harmonic was dominant; we used for sensitivity estimation whichever component (first or second) was the larger. Sensitivities were derived as in Fig. 3, except that they are expressed in terms of diode modulation instead of contrast sensitivity. Second-harmonic responses of phasic cells were small at 2 and 20 Td. Monkey troland values are approximately 1.7 times the values shown here (imp, impulses).

Fig. 5
Fig. 5

Sensitivity of human observers expressed as in Figs. 3 and 4: A, luminance modulation; B, chromatic modulation. Shown are means and standard deviations of 2–3 settings of three subjects. The arrow shows the characteristic inflection near 10 Hz in chromatic-modulation-sensitivity curves at 2000 Td.

Fig. 6
Fig. 6

Ratio of psychophysical (psy) to physiological (phy) cell sensitivity for different cell types: A, luminance modulation; B, chromatic modulation. The cell sensitivities used as a basis for the calculations were as in Figs. 3 and 4. For phasic cells and luminance modulation, the sensitivity in ratio is similar (close to unity) at all illuminances up to 20 Hz. Above 20 Hz, ratios fall steeply. The sensitivity ratio for tonic cells is much higher and dependent on retinal illuminance, few tonic cells responding at 2 or 20 Td. For tonic cells and chromatic modulation, at low frequencies, ratios are close to unity up to 5 Hz. Near 10 Hz, ratios for second-harmonic responses for phasic cells reach a level (approximately unity) consistent with their participation in detection. The curves shown indicate characteristics of hypothetical filters that may be present more centrally.

Fig. 7
Fig. 7

Illustration of variability in phase of response as a function of temporal frequency: A, phasic cells and luminance modulation; B, tonic cells for chromatic modulation; C, tonic cells for luminance modulation. For each condition, the response phase was averaged over the three contrast levels immediately above that at which a criterion modulation of 20 impulses/sec was attained. Variation was typically 5–30 deg. At low frequencies, phasic cells respond with a phase advance relative to tonic cells; with increasing frequency, response phase shows an increasing lag. On- and off-center phasic cells show a half-cycle phase difference, as do +M − L and +L − M tonic cells. D, Phase of the second-harmonic component of the phasic cell response to chromatic modulation as a function of temporal frequency. All data for 2000 Td (3400 monkey Td).

Fig. 8
Fig. 8

Amplitude sensitivity and response phase as a function of temporal frequency: A, on-center phasic cell and luminance modulation; B, +L − M tonic cells and chromatic modulation; C, +L − M tonic cell and luminance modulation. The curves for these individual cells are similar to the mean curves in Figs. 3 and 4. With decreasing retinal illuminance, the response phase develops an increasing delay.

Fig. 9
Fig. 9

Comparison of response phase expected of a minimum-phase filter with measured response phase as a function of temporal frequency, using the data from Fig. 8. Measured phase was corrected for a time delay of 20 msec to the impulse response. Data and curves have been displaced vertically for clarity. In lower panels are plotted the differences between measured and predicted phase values.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R ( c ) 2 = R m c / ( c + b ) ,

Metrics