Abstract

We describe a procedure for identifying morphology-dependent resonances observed in various optical processes in micrometer-sized droplets. This capability results from the use of a vibrating-orifice aerosol generator in which the radius a of a droplet stream is repeatedly ramped between fixed values, providing characteristic size spectra. When acquired in conjunction with other optical data (such as fluorescence, lasing, and Raman scattering), fixed-angle elastic scattering provides a fiducial spectrum from which mode positions are assigned and transferred. From Lorenz–Mie theory calculations, spectral spans of ≈0.1a are shown to be sufficient to yield unambiguous mode identification, given an initial experimental uncertainty of ±1.5° in the scattering angle and ±6% in the refractive index.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [Crossref]
  2. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
    [Crossref]
  3. A. Ashkin, J. M. Dziedzic, “Observations of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [Crossref] [PubMed]
  4. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [Crossref]
  5. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
    [Crossref] [PubMed]
  6. S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
    [Crossref] [PubMed]
  7. J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
    [Crossref]
  8. J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
    [Crossref] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, R. H. Stolen, “Outer diameter measurement of low birefringence optical fibers by a new resonant backscatter technique,” Appl. Opt. 20, 2299–2303 (1981).
    [Crossref] [PubMed]
  10. J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
    [Crossref]
  11. J. B. Snow, S.-X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref] [PubMed]
  12. R. Thurn, W. Kiefer, “Raman-microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
    [Crossref]
  13. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985).
    [Crossref] [PubMed]
  14. T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
    [Crossref]
  15. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [Crossref] [PubMed]
  16. H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
    [Crossref] [PubMed]
  17. T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
    [Crossref] [PubMed]
  18. S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.
  19. H.-B. Lin, J. D. Eversole, A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
    [Crossref]
  20. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double-resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079–2089 (1990).
    [Crossref]
  21. H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
    [Crossref]
  22. R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
    [Crossref]
  23. R. C. Weast, M. J. Astle, eds., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press, Boca Raton, Fla., 1981), p. E-380.
  24. J. M. Schneider, C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
    [Crossref]
  25. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, “Evaporation and condensation rates of liquid droplets deduced from structure resonances in the fluorescence spectra,” Opt. Lett. 9, 273–276 (1984).
    [Crossref] [PubMed]
  26. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  27. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  28. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  29. W. J. Wiscombe, “Mie scattering calculations; advances in technique and fast, vector-speed computer codes,” Document PB 301388 (National Technical Information Service, Springfield, Va., 1979).
  30. P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 19, 3019–3021 (1978).
    [Crossref]
  31. P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
    [Crossref]
  32. P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
    [Crossref]
  33. P. Chýlek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering,” Appl. Opt. 22, 2302–2307 (1983).
    [Crossref] [PubMed]
  34. C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
    [Crossref]
  35. R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
    [Crossref] [PubMed]

1990 (3)

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double-resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079–2089 (1990).
[Crossref]

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[Crossref]

1988 (1)

1987 (2)

T. Baer, “Continuous-wave laser oscillation in a Nd:YAG sphere,” Opt. Lett. 12, 392–394 (1987).
[Crossref] [PubMed]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
[Crossref]

1986 (2)

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[Crossref] [PubMed]

1985 (4)

1984 (5)

1983 (1)

1982 (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

1981 (3)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

1978 (2)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[Crossref]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 19, 3019–3021 (1978).
[Crossref]

1977 (1)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

1976 (1)

1973 (1)

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

1964 (1)

J. M. Schneider, C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[Crossref]

Ashkin, A.

Baer, T.

Barber, P. W.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
[Crossref]

P. R. Conwell, P. W. Barber, C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
[Crossref]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Benner, R. E.

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Sizing dielectric spheres and cylinders by aligning measured and computed structural resonance locations: algorithm for multiple orders,” Appl. Opt. 24, 2380–2390 (1985).
[Crossref] [PubMed]

S. C. Hill, R. E. Benner, C. K. Rushforth, P. R. Conwell, “Structural resonances observed in the fluorescence emission from small spheres on substrates,” Appl. Opt. 23, 1680–1683 (1984).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Berglund, R. N.

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Campillo, A. J.

Chang, R. K.

Chýlek, P.

P. Chýlek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering,” Appl. Opt. 22, 2302–2307 (1983).
[Crossref] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 19, 3019–3021 (1978).
[Crossref]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[Crossref]

P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
[Crossref]

Conwell, P. R.

Dorain, P. B.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
[Crossref]

Dziedzic, J. M.

Eversole, J. D.

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double-resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079–2089 (1990).
[Crossref]

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[Crossref]

R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
[Crossref] [PubMed]

Hendricks, C. D.

J. M. Schneider, C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[Crossref]

Hightower, R. L.

Hill, S. C.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Huston, A. L.

Justus, B. J.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kiefer, W.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 19, 3019–3021 (1978).
[Crossref]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[Crossref]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[Crossref]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 19, 3019–3021 (1978).
[Crossref]

Lettieri, T. R.

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[Crossref]

Lin, H.-B.

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[Crossref]

H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, “Double-resonance stimulated Raman scattering in micrometer-sized droplets,” J. Opt. Soc. Am. B 7, 2079–2089 (1990).
[Crossref]

R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
[Crossref] [PubMed]

H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986).
[Crossref] [PubMed]

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

Long, M. B.

Lui, B. Y. H.

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

McGraw, R.

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

Messinger, B. J.

Owen, J. F.

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
[Crossref]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, “Determination of optical-fiber diameter from resonances in the elastic scattering spectrum,” Opt. Lett. 6, 272–274 (1981).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Preston, R. L.

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[Crossref]

Qian, S.-X.

Ramaswamy, V.

Richardson, C. B.

R. L. Hightower, C. B. Richardson, H.-B. Lin, J. D. Eversole, A. J. Campillo, “Measurements of scattering of light from layered microspheres,” Opt. Lett. 13, 946–948 (1988).
[Crossref] [PubMed]

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

Rushforth, C. K.

Schneider, J. M.

J. M. Schneider, C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[Crossref]

Snow, J. B.

Stolen, R. H.

Tang, I. N.

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

Thurn, R.

Tzeng, H.-M.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wall, K. F.

Wiscombe, W. J.

W. J. Wiscombe, “Mie scattering calculations; advances in technique and fast, vector-speed computer codes,” Document PB 301388 (National Technical Information Service, Springfield, Va., 1979).

Aerosol Sci. Technol. (1)

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission, and elastic scattering from microparticles,” Aerosol Sci. Technol. 1, 293–302 (1982).
[Crossref]

Aerosol. Sci. Technol. (1)

C. B. Richardson, H.-B. Lin, R. McGraw, I. N. Tang, “Growth rate measurements for single suspended droplets using the optical resonance method,” Aerosol. Sci. Technol. 5, 103–112 (1986).
[Crossref]

Appl. Opt. (7)

Appl. Spectrosc. (1)

Environ. Sci. Technol. (1)

R. N. Berglund, B. Y. H. Lui, “Generation of monodisperse aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

T. R. Lettieri, R. L. Preston, “Observation of sharp resonances in the spontaneous Raman spectrum of a single optically levitated microdroplet,” Opt. Commun. 54, 349–352 (1985).
[Crossref]

Opt. Lett. (7)

Phys. Rev. A (1)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
[Crossref]

Phys. Rev. Lett. (3)

A. Ashkin, J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

J. F. Owen, P. W. Barber, P. B. Dorain, R. K. Chang, “Enhancement of fluorescence by microstructure resonances of a dielectric fiber,” Phys. Rev. Lett. 47, 1075–1078 (1987).
[Crossref]

Rev. Sci. Instrum. (2)

H.-B. Lin, J. D. Eversole, A. J. Campillo, “Vibrating orifice droplet generator for precision optical studies,” Rev. Sci. Instrum. 61, 1018–1023 (1990).
[Crossref]

J. M. Schneider, C. D. Hendricks, “Source of uniform-sized liquid droplets,” Rev. Sci. Instrum. 35, 1349–1350 (1964).
[Crossref]

Other (6)

R. C. Weast, M. J. Astle, eds., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press, Boca Raton, Fla., 1981), p. E-380.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

W. J. Wiscombe, “Mie scattering calculations; advances in technique and fast, vector-speed computer codes,” Document PB 301388 (National Technical Information Service, Springfield, Va., 1979).

S. C. Hill, R. E. Benner, “Morphology-dependent resonances,” in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), pp. 3–61.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Representative calculated spectrum of elastic-scattered light intensity for spherical droplets versus the size parameter. The spectral pattern consists of periodic broad bands separated by deep minima, each containing four to six sharper peaks and valleys. The latter features are due to specific partial-wave resonances (MDR’s). Three regions of the spectrum having similar signatures are labeled A, B, and C (truncated).

Fig. 2
Fig. 2

Three calculated elastic-scattering size spectra for droplets with a refractive index of 1.359 at scattering angles of 87.90°, 88.90°, and 89.85°. The spectra have been vertically offset for clarity. The angles were those at which spectra having similar signatures over the same approximate size range were observed. Although the spectra appear to be translated with respect to one another, specific MDR positions are independent of scattering angle as illustrated by the dashed vertical line marking the position of the TE 128 5 mode at x = 122.7.

Fig. 3
Fig. 3

Calculated size spectra for five angles starting at 88.7° in steps of 0.1°, and vertically offset, showing the apparent propagation of bands toward smaller sizes as the angle increases. For each spectrum as a whole, similarity is rapidly dissipated within a few tenths of a degree change in angle, although individual bands may mimic one another at different angles.

Fig. 4
Fig. 4

These three offset spectra have been calculated with the same scattering angle and size range in order to show the effect as the refractive index is varied from 1.360 to 1.364. The primary change is a horizontal translation of the resonance spectra toward smaller size parameter (Δx ≈ 0.32) as the index is increased (Δm = 0.004). More subtle changes in relative peak heights and slopes also occur.

Fig. 5
Fig. 5

Comparison of experimental and calculated size spectra: (a) computational spectrum for a scattering angle of 89.85°, (b) 632.8-nm elastic scattering versus VOAG frequency, (c) computational spectrum for a scattering angle of 88.90°. The calculated spectra have been optimized by varying m, θ, and integrated subtended angle to meet certain objective criteria. The experimental data are of sufficient quality to differentiate and select (c) as the correct angle based on relative peak heights and positions.

Fig. 6
Fig. 6

(a) Experimental 532-nm elastic-scattering spectrum versus VOAG frequency, (b) corresponding calculated spectrum based on a size–frequency scale determined from the He–Ne data but with m = 1.366.

Fig. 7
Fig. 7

Calculated placement of MDR’s of orders one to eight as a function of a with λ = 532 nm. Three different spectra are shown for indices (a) 1.369, (b) 1.367, (c) 1.365. The horizontal scales of spectra (a) and (b) have been translated relative to spectrum (c) by 33.4 and 16.7 nm, respectively, to align the TE 142 6 mode as indicated by the vertical dashed line. It can be seen that all the other mode positions for orders one to seven are likewise aligned to within the pen width. By the eighth order, small deviations in the resonance positions are apparent.

Fig. 8
Fig. 8

(a) 532-nm elastic-scattering spectrum of Fig. 6(a), (b) the corresponding calculated placement of all MDR’s of order one to seven. Arrows pointing up refer to TE modes, and arrows pointing down refer to TM modes. The corresponding variational size DRSRS spectra are shown in (c) for a pump intensity of 0.75 GW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = υ V .
S 1 = n = 1 2 n + 1 n ( n + 1 ) ( a n π n + b n τ n ) ( 1 ) n + 1 .
υ = C a 3 , C = Δ υ ( 1 / a 1 3 1 / a 2 3 ) ,

Metrics