Abstract

Single-beam recordings resulting in noise gratings and double-beam recordings resulting in both planar and noise gratings are studied for a range of beam ratios. The characteristics of both types of grating are determined by measuring the transmission of light through the processed hologram as a function of incident angle. It is shown that at the optimum replay wavelength the noise gratings dominate and the characteristics of planar gratings can be regained only by changing considerably the replay wavelength.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Moran, I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [CrossRef] [PubMed]
  2. M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
    [CrossRef] [PubMed]
  3. M. R. B. Forshaw, “Explanation of the diffraction fine-structure in overexposed thick holograms,” Opt. Commun. 15, 218–221 (1975).
    [CrossRef]
  4. R. Magnusson, T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545–1548 (1974).
    [CrossRef]
  5. R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
    [CrossRef]
  6. A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
    [CrossRef]
  7. R. R. A. Syms, L. Solymar, “Noise gratings in silver halide volume holograms,” Appl. Phys. B 30, 177–183 (1983).
    [CrossRef]
  8. R. K. Kostuk, G. T. Sincerbox, “Polarization sensitivity of noise gratings recorded in silver halide volume holograms,” Appl. Opt. 27, 2993–2998 (1988).
    [CrossRef] [PubMed]
  9. G. D. G. Riddy, L. Solymar, “Theoretical model of reconstructed scatter in volume holograms,” Electron. Lett. 22, 872–873 (1986).
    [CrossRef]
  10. D. J. Cooke, A. A. Ward, “Reflection-hologram processing for high efficiency in silver-halide emulsions,” Appl. Opt. 23, 934–941 (1984).
    [CrossRef] [PubMed]

1988 (1)

1986 (1)

G. D. G. Riddy, L. Solymar, “Theoretical model of reconstructed scatter in volume holograms,” Electron. Lett. 22, 872–873 (1986).
[CrossRef]

1984 (2)

D. J. Cooke, A. A. Ward, “Reflection-hologram processing for high efficiency in silver-halide emulsions,” Appl. Opt. 23, 934–941 (1984).
[CrossRef] [PubMed]

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
[CrossRef]

1983 (1)

R. R. A. Syms, L. Solymar, “Noise gratings in silver halide volume holograms,” Appl. Phys. B 30, 177–183 (1983).
[CrossRef]

1982 (1)

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[CrossRef]

1975 (1)

M. R. B. Forshaw, “Explanation of the diffraction fine-structure in overexposed thick holograms,” Opt. Commun. 15, 218–221 (1975).
[CrossRef]

1974 (2)

1973 (1)

Cooke, D. J.

Forshaw, M. R. B.

M. R. B. Forshaw, “Explanation of the diffraction fine-structure in overexposed thick holograms,” Opt. Commun. 15, 218–221 (1975).
[CrossRef]

M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
[CrossRef] [PubMed]

Gaylord, T. K.

Heaton, J. M.

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
[CrossRef]

Kaminow, I. P.

Kostuk, R. K.

Magnusson, R.

Moran, J. M.

Riddy, G. D. G.

G. D. G. Riddy, L. Solymar, “Theoretical model of reconstructed scatter in volume holograms,” Electron. Lett. 22, 872–873 (1986).
[CrossRef]

Sincerbox, G. T.

Solymar, L.

G. D. G. Riddy, L. Solymar, “Theoretical model of reconstructed scatter in volume holograms,” Electron. Lett. 22, 872–873 (1986).
[CrossRef]

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise gratings in silver halide volume holograms,” Appl. Phys. B 30, 177–183 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, L. Solymar, “Noise gratings in silver halide volume holograms,” Appl. Phys. B 30, 177–183 (1983).
[CrossRef]

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[CrossRef]

Ward, A. A.

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
[CrossRef]

D. J. Cooke, A. A. Ward, “Reflection-hologram processing for high efficiency in silver-halide emulsions,” Appl. Opt. 23, 934–941 (1984).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

R. R. A. Syms, L. Solymar, “Noise gratings in silver halide volume holograms,” Appl. Phys. B 30, 177–183 (1983).
[CrossRef]

Electron. Lett. (1)

G. D. G. Riddy, L. Solymar, “Theoretical model of reconstructed scatter in volume holograms,” Electron. Lett. 22, 872–873 (1986).
[CrossRef]

Opt. Commun. (2)

R. R. A. Syms, L. Solymar, “Noise gratings in photographic emulsion,” Opt. Commun. 43, 107–110 (1982).
[CrossRef]

M. R. B. Forshaw, “Explanation of the diffraction fine-structure in overexposed thick holograms,” Opt. Commun. 15, 218–221 (1975).
[CrossRef]

Opt. Quantum Electron. (1)

A. A. Ward, J. M. Heaton, L. Solymar, “Efficient noise gratings in silver halide emulsions,” Opt. Quantum Electron. 16, 365–367 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Transmission through the two-beam exposure holograms as a function of replay angle for beam ratios from 400:1 to 2.9:1 at a replay wavelength of 635.7 nm.

Fig. 2
Fig. 2

Transmission through the hologram as a function of replay angle for a beam ratio of 2.9:1. The dotted curves are for two-beam exposure, and the solid curves are for one-beam exposure. The replay wavelengths are (a) 620.0 nm, (b) 560.0 nm.

Metrics