Abstract

Increment-threshold spectral-sensitivity (ITSS) functions and threshold-versus-intensity (tvi) curves were measured under white-light adaptation in rhesus monkeys. The tvi curves showed shape and test wavelength invariance, implying that three cone mechanisms were mediating detection. In general, the results were in agreement with the differential adaptation hypothesis proposed by Stiles that predicted spectral shape invariance of the cone mechanisms but overall changes in the shape of the spectral-sensitivity function with increases in the intensity of the adapting field. The principal changes occurring in the ITSS function as the level of adaptation increased involved a smaller loss in sensitivity of the short-wavelength and the long-wavelength peaks compared with the corresponding loss in sensitivity of the middle-wavelength peak. A three-channel model with an opponent L–M mechanism and a nonopponent L–M mechanism (both with S-cone input) and an independent S-cone mechanism described the ITSS data as well as other increment-threshold and suprathreshold data. The model values for the ITSS functions, along with parameters derived from the transformation of these data to cone-contrast coordinates, permitted the factoring out of first-site adaptation, second-site adaptation, and the relative strengths of contribution of the L and M cones within the opponent and nonopponent L–M channels.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, “Introductory essay—increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), p. 1–35.
  2. W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
    [Crossref]
  3. W. B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
    [Crossref] [PubMed]
  4. G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
    [Crossref] [PubMed]
  5. H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [Crossref] [PubMed]
  6. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [Crossref] [PubMed]
  7. R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
    [Crossref] [PubMed]
  8. T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
    [Crossref] [PubMed]
  9. T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
    [Crossref] [PubMed]
  10. M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73, digest of Second Congress of the International Colour Association (Hilger, Bristol, UK, 1973), pp. 99–135.
  11. M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Probl. Ophthalmol. 13, 248–252 (1978).
  12. A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
    [Crossref]
  13. S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
    [Crossref]
  14. R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
    [Crossref] [PubMed]
  15. R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
    [Crossref] [PubMed]
  16. N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
    [Crossref] [PubMed]
  17. P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
    [Crossref]
  18. K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
    [Crossref]
  19. W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
    [Crossref] [PubMed]
  20. J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).
  21. B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
    [Crossref]
  22. D. A. Baylor, “Photoreceptor signals and vision—Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
    [PubMed]
  23. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  24. C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148 (1969).
    [Crossref] [PubMed]
  25. J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.
  26. E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.
  27. H. Kelly, D. van Norren, “Two-band model of heterochro-matic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [Crossref] [PubMed]
  28. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
    [Crossref] [PubMed]
  29. C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.
  30. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
    [Crossref]
  31. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [Crossref] [PubMed]
  32. C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
    [Crossref] [PubMed]
  33. C. R. Ingling, E. Martinez, “Stiles’s π 5 mechanism: failure to show univariance is caused by opponent-channel input,”J. Opt. Soc. Am. 71, 1134–1137 (1981).
    [Crossref]
  34. P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
    [Crossref]
  35. P. E. King-Smith, D. Carden, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: authors’ reply to comments,” J. Opt. Soc. Am. 68, 1146–1147 (1978).
    [Crossref]
  36. C. R. Ingling, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: comment,” J. Opt. Soc. Am. 68, 1143–1146 (1978).
    [Crossref] [PubMed]
  37. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [Crossref] [PubMed]
  38. S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
    [Crossref] [PubMed]
  39. C. R. Ingling, B. H-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
    [Crossref]
  40. L. M. Hurvich, Color Vision (Sinauer, Sanderland, Mass., 1981).
  41. W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurkd. 15, 125–145 (1949).
  42. W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
    [Crossref]
  43. W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticas de la Vision, Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).
  44. G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).
  45. R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
    [Crossref] [PubMed]
  46. S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
    [PubMed]
  47. R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
    [Crossref] [PubMed]
  48. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [Crossref] [PubMed]
  49. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [Crossref] [PubMed]
  50. C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
    [Crossref]
  51. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
    [Crossref]
  52. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [Crossref] [PubMed]
  53. M. Kalloniatis, R. S. Harwerth, “The effects of chromatic adaptation on opponent cone interactions in increment-threshold spectral sensitivity functions in monkeys,” submitted to J. Opt. Soc. Am. A.
  54. H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).
  55. H. B. Barlow, “Intrinsic noise of cones,” Natl. Phys. Lab. (U.K.) Symp. 8, 615–637 (1958).
  56. E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the pi–1 pathway,” Vision Res. 20, 779–788 (1980).
    [Crossref]
  57. W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
    [Crossref]
  58. R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretical critical axes,” Color Res. Appl. 5, 13–23 (1980).
    [Crossref]
  59. M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).
  60. S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
    [Crossref] [PubMed]
  61. F. M. de Monasterio, P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vision Res. 17, 1147–1156 (1977).
    [Crossref] [PubMed]
  62. W. S. Stiles, “Investigation of the scotopic and trichromatic mechanisms of vision by the two-colour threshold technique,” Rev. Opt. 28, 215–237 (1949).
  63. M. Ikeda, “Study of interrelations between mechanisms at threshold,” J. Opt. Soc. Am. 53, 1305–1313 (1963).
    [Crossref] [PubMed]
  64. R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
    [Crossref]
  65. R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
    [Crossref] [PubMed]
  66. P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
    [Crossref] [PubMed]
  67. C. H. Graham, E. H. Kemp, “Brightness discrimination as a function of the increment in intensity,” J. Gen. Physiol. 21, 635–650 (1938).
    [Crossref] [PubMed]
  68. F. L. van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
    [Crossref]
  69. C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red-green detection,” Vision Res. 28, 931–940 (1988).
    [Crossref]
  70. J. M. Valeton, D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
    [Crossref] [PubMed]
  71. R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,” J. Physiol. (London) 286, 491–507 (1979).
  72. E. N. Pugh, J. D. Mollon, “A theory of the pi–1 and pi–3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [Crossref]
  73. J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
    [Crossref]
  74. D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
    [Crossref]
  75. L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).
  76. Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
    [Crossref] [PubMed]
  77. H. G. Sperling, W. G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
    [Crossref] [PubMed]
  78. C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).
  79. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [Crossref] [PubMed]
  80. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
    [Crossref] [PubMed]
  81. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: Relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
    [Crossref] [PubMed]
  82. S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
    [Crossref] [PubMed]
  83. B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
    [Crossref]
  84. J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
    [Crossref]
  85. F. M. de Monasterio, “Electrophysiology of color vision, I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 9–28.
    [Crossref]
  86. P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).
  87. P. Gouras, “Color vision,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1984), Vol. 3, pp. 227–261.
    [Crossref]
  88. R. L. De Valois, G. H. Jacobs, “Neural mechanisms of color vision,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 425–456.
  89. P. O. Bishop, “Processing of visual information within the retinostriate system,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 341–424.
  90. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophys. 29, 1115–1156 (1966).
  91. F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).
  92. E. Zrenner, “Electrophysical aspects of color vision in primates,” in Studies of Brain Function, V. Braitenberg, ed. (Springer-Verlag, Berlin, 1983), Vol. 9.
    [Crossref]
  93. P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanism,” Science 205, 587–589 (1979).
    [Crossref] [PubMed]
  94. M. A. Finkelstein, D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
    [Crossref] [PubMed]
  95. M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
    [Crossref] [PubMed]
  96. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).
  97. R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).
  98. A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).
  99. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  100. B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

1989 (1)

R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).

1988 (2)

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red-green detection,” Vision Res. 28, 931–940 (1988).
[Crossref]

1987 (6)

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

D. A. Baylor, “Photoreceptor signals and vision—Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[Crossref] [PubMed]

1986 (2)

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
[Crossref] [PubMed]

1985 (3)

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
[Crossref]

S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
[Crossref] [PubMed]

1984 (4)

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[Crossref] [PubMed]

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

1983 (4)

J. M. Valeton, D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[Crossref] [PubMed]

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[Crossref]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[Crossref]

1982 (3)

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[Crossref]

M. A. Finkelstein, D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

1981 (4)

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
[Crossref] [PubMed]

C. R. Ingling, E. Martinez, “Stiles’s π 5 mechanism: failure to show univariance is caused by opponent-channel input,”J. Opt. Soc. Am. 71, 1134–1137 (1981).
[Crossref]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[Crossref]

1980 (5)

J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).

S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[Crossref] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[Crossref] [PubMed]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the pi–1 pathway,” Vision Res. 20, 779–788 (1980).
[Crossref]

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretical critical axes,” Color Res. Appl. 5, 13–23 (1980).
[Crossref]

1979 (7)

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,” J. Physiol. (London) 286, 491–507 (1979).

E. N. Pugh, J. D. Mollon, “A theory of the pi–1 and pi–3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[Crossref]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: Relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanism,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

1978 (3)

1977 (5)

C. R. Ingling, B. H-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref]

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[Crossref]

F. M. de Monasterio, P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vision Res. 17, 1147–1156 (1977).
[Crossref] [PubMed]

H. Kelly, D. van Norren, “Two-band model of heterochro-matic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[Crossref] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

1976 (1)

1975 (4)

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

1974 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

1973 (2)

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[Crossref] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[Crossref] [PubMed]

1971 (1)

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

1969 (1)

C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148 (1969).
[Crossref] [PubMed]

1968 (1)

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[Crossref] [PubMed]

1967 (2)

1966 (1)

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophys. 29, 1115–1156 (1966).

1964 (2)

W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
[Crossref] [PubMed]

W. B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

1963 (2)

1959 (3)

1958 (1)

H. B. Barlow, “Intrinsic noise of cones,” Natl. Phys. Lab. (U.K.) Symp. 8, 615–637 (1958).

1957 (2)

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

1955 (1)

1953 (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticas de la Vision, Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

1952 (1)

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[Crossref] [PubMed]

1949 (2)

W. S. Stiles, “Investigation of the scotopic and trichromatic mechanisms of vision by the two-colour threshold technique,” Rev. Opt. 28, 215–237 (1949).

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurkd. 15, 125–145 (1949).

1939 (1)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[Crossref]

1938 (2)

C. H. Graham, E. H. Kemp, “Brightness discrimination as a function of the increment in intensity,” J. Gen. Physiol. 21, 635–650 (1938).
[Crossref] [PubMed]

S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
[Crossref] [PubMed]

1933 (1)

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[Crossref]

1928 (1)

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Adams, A. J.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[Crossref]

Akita, M.

Alvarez, S. L.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[Crossref]

Barlow, H. B.

H. B. Barlow, “Intrinsic noise of cones,” Natl. Phys. Lab. (U.K.) Symp. 8, 615–637 (1958).

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

Baylor, D. A.

D. A. Baylor, “Photoreceptor signals and vision—Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

Benzschawal, T. C.

Bhargava, S. K.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[Crossref]

Bishop, P. O.

P. O. Bishop, “Processing of visual information within the retinostriate system,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 341–424.

Boltz, R. L.

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[Crossref] [PubMed]

Bouman, M. A.

Bowmaker, J. D.

J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).

Boynton, R. M.

R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
[Crossref] [PubMed]

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretical critical axes,” Color Res. Appl. 5, 13–23 (1980).
[Crossref]

R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[Crossref]

R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[Crossref] [PubMed]

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

Brown, W. B.

W. B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

Burns, S. A.

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

Carden, D.

Cavonius, C. R.

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[Crossref]

Cicerone, C. M.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Cole, G. R.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Crawford, B. H.

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[Crossref]

Crawford, M. L. J.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

Dartnall, H. J. A.

J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).

de Monasterio, F. M.

F. M. de Monasterio, P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vision Res. 17, 1147–1156 (1977).
[Crossref] [PubMed]

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

F. M. de Monasterio, “Electrophysiology of color vision, I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 9–28.
[Crossref]

De Valois, R. L.

R. L. De Valois, G. H. Jacobs, “Neural mechanisms of color vision,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 425–456.

Derrington, A. M.

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Dobelle, W. H.

W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
[Crossref] [PubMed]

Doft, B. H.

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

Duncan, G. C.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

Eisner, A. E.

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

Ejima, Y.

Eskew, R. T.

R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
[Crossref] [PubMed]

Fach, C.

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

Finkelstein, M. A.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[Crossref] [PubMed]

M. A. Finkelstein, D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
[Crossref] [PubMed]

Foster, D. H.

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[Crossref]

Friedman, L. J.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Gouras, P.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanism,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

F. M. de Monasterio, P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vision Res. 17, 1147–1156 (1977).
[Crossref] [PubMed]

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

P. Gouras, “Color vision,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1984), Vol. 3, pp. 227–261.
[Crossref]

Graham, C. H.

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[Crossref] [PubMed]

C. H. Graham, E. H. Kemp, “Brightness discrimination as a function of the increment in intensity,” J. Gen. Physiol. 21, 635–650 (1938).
[Crossref] [PubMed]

Guth, S. L.

Harwerth, R. S.

R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[Crossref] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[Crossref] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

M. Kalloniatis, R. S. Harwerth, “The effects of chromatic adaptation on opponent cone interactions in increment-threshold spectral sensitivity functions in monkeys,” submitted to J. Opt. Soc. Am. A.

Hecht, S.

S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
[Crossref] [PubMed]

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Heuts, M. J. G.

Hood, D. C.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[Crossref] [PubMed]

M. A. Finkelstein, D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
[Crossref] [PubMed]

Hsia, Y.

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[Crossref] [PubMed]

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophys. 29, 1115–1156 (1966).

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

L. M. Hurvich, Color Vision (Sinauer, Sanderland, Mass., 1981).

Ikeda, M.

Ingling, C. R.

C. R. Ingling, E. Martinez, “Stiles’s π 5 mechanism: failure to show univariance is caused by opponent-channel input,”J. Opt. Soc. Am. 71, 1134–1137 (1981).
[Crossref]

C. R. Ingling, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: comment,” J. Opt. Soc. Am. 68, 1143–1146 (1978).
[Crossref] [PubMed]

C. R. Ingling, B. H-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148 (1969).
[Crossref] [PubMed]

Jacobs, G. H.

R. L. De Valois, G. H. Jacobs, “Neural mechanisms of color vision,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 425–456.

Jameson, D.

Kalloniatis, M.

R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).

M. Kalloniatis, R. S. Harwerth, “The effects of chromatic adaptation on opponent cone interactions in increment-threshold spectral sensitivity functions in monkeys,” submitted to J. Opt. Soc. Am. A.

M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).

Kambe, N.

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretical critical axes,” Color Res. Appl. 5, 13–23 (1980).
[Crossref]

Kandel, G.

Kelly, H.

Kemp, E. H.

C. H. Graham, E. H. Kemp, “Brightness discrimination as a function of the increment in intensity,” J. Gen. Physiol. 21, 635–650 (1938).
[Crossref] [PubMed]

King-Smith, P. E.

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[Crossref]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[Crossref]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[Crossref]

P. E. King-Smith, D. Carden, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: authors’ reply to comments,” J. Opt. Soc. Am. 68, 1146–1147 (1978).
[Crossref]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[Crossref] [PubMed]

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[Crossref]

Koenderink, J. J.

Kranda, K.

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[Crossref]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[Crossref]

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Larimer, J.

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the pi–1 pathway,” Vision Res. 20, 779–788 (1980).
[Crossref]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Lee, B. B.

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Lee, J.

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red-green detection,” Vision Res. 28, 931–940 (1988).
[Crossref]

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

Lewis, W. G.

Lobes, L. A.

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

MacNichol, E. F.

W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
[Crossref] [PubMed]

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

Marks, W. B.

W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
[Crossref] [PubMed]

Marre, E.

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Probl. Ophthalmol. 13, 248–252 (1978).

Marre, M.

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Probl. Ophthalmol. 13, 248–252 (1978).

M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73, digest of Second Congress of the International Colour Association (Hilger, Bristol, UK, 1973), pp. 99–135.

Martin, P. R.

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Martinez, E.

Massof, R. W.

Mollon, J. D.

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).

E. N. Pugh, J. D. Mollon, “A theory of the pi–1 and pi–3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[Crossref]

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[Crossref]

Nagy, A. L.

R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
[Crossref] [PubMed]

Noorlander, C.

Normann, R. A.

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,” J. Physiol. (London) 286, 491–507 (1979).

Nuccio, E.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

Onley, J. W.

Patt, M.

S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
[Crossref] [PubMed]

Pease, P. L.

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).

Perlman, I.

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,” J. Physiol. (London) 286, 491–507 (1979).

Peskin, J. C.

S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
[Crossref] [PubMed]

Piantanida, T. P.

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[Crossref] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[Crossref] [PubMed]

Polden, P. G.

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[Crossref]

Pugh, E. N.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the pi–1 pathway,” Vision Res. 20, 779–788 (1980).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the pi–1 and pi–3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

Sidley, N. A.

Sloan, L. L.

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Smith, E. L.

R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[Crossref] [PubMed]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[Crossref] [PubMed]

Snelgar, R. S.

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[Crossref]

Sperling, H. G.

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[Crossref] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[Crossref] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[Crossref] [PubMed]

H. G. Sperling, W. G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
[Crossref] [PubMed]

Stiles, W. S.

W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
[Crossref]

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticas de la Vision, Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurkd. 15, 125–145 (1949).

W. S. Stiles, “Investigation of the scotopic and trichromatic mechanisms of vision by the two-colour threshold technique,” Rev. Opt. 28, 215–237 (1949).

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[Crossref]

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[Crossref]

W. S. Stiles, “Introductory essay—increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), p. 1–35.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Stromeyer, C. F.

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red-green detection,” Vision Res. 28, 931–940 (1988).
[Crossref]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
[Crossref]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

Takahashi, S.

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

Tolhurst, D. J.

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

Tsou, B. H-P.

C. R. Ingling, B. H-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref]

Valberg, A.

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

Valeton, J. M.

J. M. Valeton, D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[Crossref] [PubMed]

van Nes, F. L.

van Norren, D.

J. M. Valeton, D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[Crossref] [PubMed]

H. Kelly, D. van Norren, “Two-band model of heterochro-matic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[Crossref] [PubMed]

von Noorden, G. K.

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

Wald, G.

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[Crossref] [PubMed]

W. B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

Werner, J. S.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: Relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophys. 29, 1115–1156 (1966).

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

Wooten, B. R.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: Relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

Yim, M. H.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

Zrenner, E.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanism,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

E. Zrenner, “Electrophysical aspects of color vision in primates,” in Studies of Brain Function, V. Braitenberg, ed. (Springer-Verlag, Berlin, 1983), Vol. 9.
[Crossref]

Am. J. Optom. Phys. Opt. (1)

A. J. Adams, “Chromatic and luminosity processing in retinal disease,” Am. J. Optom. Phys. Opt. 59, 954–960 (1982).
[Crossref]

Am. J. Optom. Physiol. Opt. (1)

R. S. Harwerth, E. L. Smith, “The rhesus monkey as a model for normal vision of humans,” Am. J. Optom. Physiol. Opt. 62, 633–641 (1985).
[Crossref] [PubMed]

Brit. J. Ophthalmol. (1)

S. L. Alvarez, P. E. King-Smith, S. K. Bhargava, “Spectral thresholds in macular degeneration,” Brit. J. Ophthalmol. 67, 508–511 (1983).
[Crossref]

Coloquio sobre Problemas Opticas de la Vision, Madrid, Union Int. Phys. Pure Appl. (1)

W. S. Stiles, “Further studies of visual mechanisms by the two-colour threshold method,” Coloquio sobre Problemas Opticas de la Vision, Madrid, Union Int. Phys. Pure Appl. 1, 65–103 (1953).

Color Res. Appl. (1)

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretical critical axes,” Color Res. Appl. 5, 13–23 (1980).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

S. A. Burns, A. E. Eisner, L. A. Lobes, B. H. Doft, “A psychophysical technique for measuring cone photopigment bleaching,” Invest. Ophthalmol. Vis. Sci. 28, 711–717 (1987).
[PubMed]

D. A. Baylor, “Photoreceptor signals and vision—Proctor lecture,” Invest. Ophthalmol. Vis. Sci. 28, 34–49 (1987).
[PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (2)

C. Fach, J. D. Mollon, “Predicting the position of Sloan’s notch,” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 212 (1987).

R. S. Harwerth, M. Kalloniatis, E. L. Smith, “Independence of opponent and nonopponent mechanisms in flicker-detection spectral sensitivity functions,” Invest. Ophthalmol. Vis. Sci. Suppl. 30, 128 (1989).

J. Gen. Physiol. (2)

S. Hecht, J. C. Peskin, M. Patt, “Intensity discrimination in the human eye,” J. Gen. Physiol. 22, 7–19 (1938).
[Crossref] [PubMed]

C. H. Graham, E. H. Kemp, “Brightness discrimination as a function of the increment in intensity,” J. Gen. Physiol. 21, 635–650 (1938).
[Crossref] [PubMed]

J. Neurophys. (1)

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophys. 29, 1115–1156 (1966).

J. Opt. Soc. Am. (15)

H. G. Sperling, W. G. Lewis, “Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold,” J. Opt. Soc. Am. 49, 983–989 (1959).
[Crossref] [PubMed]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: Relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

F. L. van Nes, M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401–406 (1967).
[Crossref]

M. Ikeda, “Study of interrelations between mechanisms at threshold,” J. Opt. Soc. Am. 53, 1305–1313 (1963).
[Crossref] [PubMed]

R. M. Boynton, “Contribution of threshold measurements to color-discrimination theory,” J. Opt. Soc. Am. 53, 165–178 (1963).
[Crossref]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

H. Kelly, D. van Norren, “Two-band model of heterochro-matic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[Crossref] [PubMed]

C. Noorlander, M. J. G. Heuts, J. J. Koenderink, “Sensitivity to spatiotemporal combined luminance and chromaticity contrast,” J. Opt. Soc. Am. 71, 453–459 (1981).
[Crossref] [PubMed]

C. R. Ingling, E. Martinez, “Stiles’s π 5 mechanism: failure to show univariance is caused by opponent-channel input,”J. Opt. Soc. Am. 71, 1134–1137 (1981).
[Crossref]

P. E. King-Smith, D. Carden, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: authors’ reply to comments,” J. Opt. Soc. Am. 68, 1146–1147 (1978).
[Crossref]

C. R. Ingling, “Luminance and opponent color contributions to visual detection and to temporal and spatial integration: comment,” J. Opt. Soc. Am. 68, 1143–1146 (1978).
[Crossref] [PubMed]

S. L. Guth, R. W. Massof, T. C. Benzschawal, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980).
[Crossref] [PubMed]

N. A. Sidley, H. G. Sperling, “Photopic spectral sensitivity in the rhesus monkey,” J. Opt. Soc. Am. 57, 816–818 (1967).
[Crossref] [PubMed]

P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
[Crossref] [PubMed]

R. M. Boynton, G. Kandel, J. W. Onley, “Rapid chromatic adaptation of normal and dichromatic observers,” J. Opt. Soc. Am. 49, 654–666 (1959).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (8)

F. M. de Monasterio, P. Gouras, D. J. Tolhurst, “Concealed colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. (London) 251, 217–229 (1975).

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 219–240 (1984).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. (London) 404, 323–347 (1988).

J. D. Bowmaker, H. J. A. Dartnall, J. D. Mollon, “Micro-spectrophotometric demonstration of four classes of photoreceptors in an old world primate, Macaca fascicularis,” J. Physiol. (London) 298, 131–143 (1980).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

H. B. Barlow, “Increment thresholds at low intensities considered as signal/noise discriminations,” J. Physiol. (London) 136, 469–488 (1957).

R. A. Normann, I. Perlman, “The effects of background illumination on the photoresponses of red and green cones,” J. Physiol. (London) 286, 491–507 (1979).

Mod. Probl. Ophthalmol. (1)

M. Marre, E. Marre, “Different types of acquired colour vision deficiencies on the base of CVM patters is dependent upon the fixation mode of the diseased eye,” Mod. Probl. Ophthalmol. 13, 248–252 (1978).

Natl. Phys. Lab. (U.K.) Symp. (1)

H. B. Barlow, “Intrinsic noise of cones,” Natl. Phys. Lab. (U.K.) Symp. 8, 615–637 (1958).

Nature (London) (3)

J. D. Mollon, P. G. Polden, “Saturation of a retinal cone mechanism,” Nature (London) 265, 243–246 (1977).
[Crossref]

P. E. King-Smith, “Visual detection analyzed in terms of luminance and chromatic signals,” Nature (London) 255, 69–70 (1975).
[Crossref]

B. J. Nunn, J. L. Schnapf, D. A. Baylor, “Spectral sensitivity of single cones in the retina of Macaca fascicularis,” Nature (London) 309, 264–266 (1984).
[Crossref]

Ned. Tijdschr. Natuurkd. (1)

W. S. Stiles, “The determination of the spectral sensitivities of the retinal mechanisms by sensory methods,” Ned. Tijdschr. Natuurkd. 15, 125–145 (1949).

Perception (1)

R. M. Boynton, A. L. Nagy, R. T. Eskew, “Similarity of normalized discrimination ellipses in the constant-luminance chromaticity plane,” Perception 15, 755–763 (1986).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (2)

W. S. Stiles, “Color vision: the approach through increment threshold sensitivity,” Proc. Natl. Acad. Sci. USA 45, 100–114 (1959).
[Crossref]

Y. Hsia, C. H. Graham, “Spectral sensitivity of the cones in the dark adapted human eye,” Proc. Natl. Acad. Sci. USA 38, 80–85 (1952).
[Crossref] [PubMed]

Proc. R. Soc. London Ser. B (2)

W. S. Stiles, “The directional sensitivity of the retina and the spectral sensitivities of the rods and cones,” Proc. R. Soc. London Ser. B 127, 64–105 (1939).
[Crossref]

W. S. Stiles, B. H. Crawford, “The liminal brightness increment as a function of wave-length for different conditions of the foveal and parafoveal retina,” Proc. R. Soc. London Ser. B 113, 496–530 (1933).
[Crossref]

Psychol. Monogr. (1)

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve—a study of the Purkinje phenomenon,” Psychol. Monogr. 38, 1–87 (1928).

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[Crossref] [PubMed]

Rev. Opt. (1)

W. S. Stiles, “Investigation of the scotopic and trichromatic mechanisms of vision by the two-colour threshold technique,” Rev. Opt. 28, 215–237 (1949).

Science (7)

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

W. B. Brown, G. Wald, “Visual pigments in single rods and cones of the human retina,” Science 144, 45–52 (1964).
[Crossref] [PubMed]

G. Wald, “Molecular basis of visual excitation,” Science 162, 230–239 (1968).
[Crossref] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red-green cone interactions in increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[Crossref] [PubMed]

R. S. Harwerth, E. L. Smith, G. C. Duncan, M. L. J. Crawford, G. K. von Noorden, “Multiple sensitivity periods in the development of the primate visual system,” Science 232, 235–238 (1986).
[Crossref] [PubMed]

W. B. Marks, W. H. Dobelle, E. F. MacNichol, “Visual pigments of single primate cones,” Science 143, 1181–1182 (1964).
[Crossref] [PubMed]

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanism,” Science 205, 587–589 (1979).
[Crossref] [PubMed]

Vision Res. (26)

M. A. Finkelstein, D. C. Hood, “Opponent-color cells can influence detection of small, brief lights,” Vision Res. 22, 89–95 (1982).
[Crossref] [PubMed]

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Chromatic suppression of cone inputs to the luminance flicker mechanism,” Vision Res. 27, 1113–1137 (1987).
[Crossref] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[Crossref]

K. Kranda, P. E. King-Smith, “Detection of colored stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[Crossref]

R. S. Harwerth, M. L. J. Crawford, E. L. Smith, R. L. Boltz, “Behavioral studies of stimulus deprivation amblyopia in monkeys,” Vision Res. 21, 779–789 (1981).
[Crossref] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the protanomalous observer,” Vision Res. 13, 2033–2047 (1973).
[Crossref] [PubMed]

T. P. Piantanida, H. G. Sperling, “Isolation of a third chromatic mechanism in the deuteranomalous observer,” Vision Res. 13, 2049–2058 (1973).
[Crossref] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathway,” Vision Res. 25, 219–237 (1985).
[Crossref]

P. E. King-Smith, K. Kranda, “Photopic adaptation in the red–green spectral range,” Vision Res. 21, 565–572 (1981).
[Crossref]

C. R. Ingling, B. H-P. Tsou, “Orthogonal combinations of the three visual channels,” Vision Res. 17, 1075–1082 (1977).
[Crossref]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

C. R. Ingling, “A tetrachromatic hypothesis for human color vision,” Vision Res. 9, 1131–1148 (1969).
[Crossref] [PubMed]

F. M. de Monasterio, P. Gouras, “Responses of macaque ganglion cells to far violet lights,” Vision Res. 17, 1147–1156 (1977).
[Crossref] [PubMed]

P. L. Pease, A. J. Adams, E. Nuccio, “Optical density of human macular pigment,” Vision Res. 27, 705–710 (1987).
[Crossref] [PubMed]

D. H. Foster, R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour process?” Vision Res. 23, 787–797 (1983).
[Crossref]

E. N. Pugh, J. D. Mollon, “A theory of the pi–1 and pi–3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

C. F. Stromeyer, J. Lee, “Adaptation effects of short wave cone signals on red-green detection,” Vision Res. 28, 931–940 (1988).
[Crossref]

J. M. Valeton, D. van Norren, “Light adaptation of primate cones: an analysis based on extracellular data,” Vision Res. 23, 1539–1547 (1983).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent-process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent-process additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the pi–1 pathway,” Vision Res. 20, 779–788 (1980).
[Crossref]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[Crossref] [PubMed]

R. S. Harwerth, R. L. Boltz, E. L. Smith, “Psychophysical evidence for sustained and transient channels in the monkey visual system,” Vision Res. 20, 15–22 (1980).
[Crossref] [PubMed]

Other (17)

M. Kalloniatis, R. S. Harwerth, “The effects of chromatic adaptation on opponent cone interactions in increment-threshold spectral sensitivity functions in monkeys,” submitted to J. Opt. Soc. Am. A.

M. Kalloniatis, “Psychophysical studies of color vision processing in the monkey visual system,” Ph.D. dissertation (University of Houston, Houston, Tex., 1988).

G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1982).

J. E. Thornton, E. N. Pugh, “Relationship of opponent colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

E. N. Pugh, J. E. Thornton, L. J. Friedman, M. H. Yim, “Stiles’s pi–1 and pi–2 colour mechanisms: isolation of a blue–yellow pathway in normals and dichromats,” in Central and Peripheral Mechanisms of Colour Vision, D. Ottoson, S. Zeki, eds. (Macmillan, London, 1985), pp. 117–137.

C. F. Stromeyer, R. E. Kronauer, G. R. Cole, “Adaptive mechanisms controlling sensitivity to red-green chromatic flashes,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 313–330.

L. M. Hurvich, Color Vision (Sinauer, Sanderland, Mass., 1981).

M. Marre, “The investigation of acquired colour vision deficiencies,” in Colour 73, digest of Second Congress of the International Colour Association (Hilger, Bristol, UK, 1973), pp. 99–135.

W. S. Stiles, “Introductory essay—increment thresholds in the analysis of colour-sensitive mechanisms of vision: historical retrospect and comment on recent developments,” in Mechanisms of Colour Vision (Academic, London, 1978), p. 1–35.

J. D. Mollon, C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” in Colour Vision Deficiencies VIII, G. Verriest, ed. (Junk, Dordrecht, The Netherlands, 1987), pp. 473–483.
[Crossref]

F. M. de Monasterio, “Electrophysiology of color vision, I. Cellular level,” in Colour Vision Deficiencies VII, G. Verriest, ed. (Junk, The Hague, 1984), pp. 9–28.
[Crossref]

P. L. Pease, “Spectral properties of monkey lateral geniculate cells,” Ph.D. dissertation (University of California, Berkeley, Berkeley, Calif., 1975).

P. Gouras, “Color vision,” in Progress in Retinal Research, N. N. Osborne, G. J. Chader, eds. (Pergamon, Oxford, 1984), Vol. 3, pp. 227–261.
[Crossref]

R. L. De Valois, G. H. Jacobs, “Neural mechanisms of color vision,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 425–456.

P. O. Bishop, “Processing of visual information within the retinostriate system,” in Sensory Processes, I. Darian-Smith, ed., Vol. III of Handbook of Physiology (American Physiological Society, Bethesda, Md., 1984), pp. 341–424.

R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, New York, 1979).

E. Zrenner, “Electrophysical aspects of color vision in primates,” in Studies of Brain Function, V. Braitenberg, ed. (Springer-Verlag, Berlin, 1983), Vol. 9.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Tvi curves on a white background for three representative test wavelengths of 460, 520, and 660 nm (subject B2). The arrows pointing to the abscissa show the field sensitivity (the field intensity needed to raise the test threshold 1 log unit above absolute threshold) for each photopic mechanism. The lower tvi curve for the 520- and 460-nm test field reflects the rod mechanism. Specifying the abscissa in photopic trolands does not provide accurate data for the quantal catch of the S cones58 or the relative stimulation of L and M cones. The calculated Lf, Mf, and Sf values indicated that the adapting background stimulated the L, M, and S cones at a ratio of 4.7:3.6:1. This reflects a mean lower stimulation of 0.62 log unit for the S cones. Note: Tvi curves in all figures have been arbitrarily placed along the ordinate axis for ease of viewing. Each data point on the tvi curves reflects the geometric mean of at least three thresholds. Error bars reflect ± 1 standard error of the mean.

Fig. 2
Fig. 2

Tvi curves on a white background for the spectral test wavelength range of 390 to 680 nm for subject L. Note the marked differences in field sensitivity at 390 and 400 nm, compared with those found at 410 through 460 nm (field sensitivity is indicated by the small vertical arrow on the tvi curve). Also, note the failure of shape invariance at 490 through 580 nm for the photopic tvi branches. The data for low adapting intensities on the tvi curves in the spectral range of 390 to ≈580 nm reflect the rod mechanism.

Fig. 3
Fig. 3

Tvi curves on a white background for the spectral test wavelength range of 390 to 680 nm for subject B2. AU other details are the same as in Fig. 2.

Fig. 4
Fig. 4

Summary of the field intensity (in log photopic trolands) required to raise the test threshold 1 log unit above absolute threshold for the spectral ranges studied with the tvi curves in Figs. 2 and 3. Test wavelength invariance indicated by these data sets would imply that only three photopic mechanisms are operating over the entire spectral range for white-light-adaptation conditions. The open circles indicate the field intensity for the 390- and 400-nm test wavelengths.

Fig. 5
Fig. 5

Summary of the exponent (slope) values for the tvi curves in Figs. 2 and 3. Note the overlap in the exponents for the L–M opponent and L–M nonopponent channels and the higher exponent for the S channel. For subject L, the exponent values for the test wavelengths of 540 and 560 nm were set to the mean value used to fit the tvi curves for adjacent wavelengths. All remaining exponents were obtained by using a three-parameter fit for the tvi curve. The open circles indicate the exponent for the 390- and 400-nm test wavelengths.

Fig. 6
Fig. 6

ITSS functions at the four adaptation levels for subject L. The fitted curves were derived from Eqs. (4)(6). The L–M opponent interaction was set at |L − 1.62M|, and the fit was obtained by sliding each channel along the sensitivity axis. The L–M nonopponent channel was also set at the value obtained at 30 Td, i.e., (L + 2.33M). Data at shorter wavelengths were fitted with the S-mechanism alone. Note: Each data point (shown as the reciprocal quantal unit) on this and subsequent ITSS functions reflects the geometric mean of at least six thresholds.

Fig. 7
Fig. 7

ITSS functions at the four adaptation levels for subject B2. The set values were |L − 1.51M| for the L–M opponent channel and (L + 9.1M) for the L–M nonopponent channel. All other details are the same as in Fig. 6.

Fig. 8
Fig. 8

Spectral-sensitivity function at absolute thresholds derived from the A value, i.e., the extrapolated test threshold on a zero background of the photopic tvi curves from Figs. 2 and 3. Each symbol reflects the channel from which the data were derived. The data were fitted by the spectra sensitivity channels used to fit the ITSS functions at the different adaptation levels shown in Figs. 6 and 7.

Fig. 9
Fig. 9

Summary of ITSS functions at five adaptation levels. The ITSS function represents the upper envelope of the sensitivities of three mechanisms, i.e., the S channel, the L–M opponent and the L–M nonopponent channels. Differential adaptation between the channels results in the characteristic changes in the shape of the ITSS function with increases in the level of achromatic adaptation.

Fig. 10
Fig. 10

Transformation of ITSS functions at 30 and 30,000 Td for subjects L and B2 into cone-contrast coordinates. The data at longer wavelengths (L − M detection contour) are fitted by straight lines with slopes of 0.77 and 0.85 (subject L) and 0.85 and 0.85 (subject B2) for the two adapting backgrounds. The straight lines were fitted by linear regression, but for the 30,000-Td background the two detection contours were constrained to be parallel. The curved lines were fitted by eye. At low intensity levels, the green test flashes (480–560-nm range) are detected by a mechanism with negative slope indicating excitatory input between the L and M cones. At high intensity levels, two parallel detection contours approximately equidistant from the origin, one detecting red test flashes (L − M detection contour) and the other detecting green test flashes (M − L detection contour), indicate that the L − M opponent channel has roughly reciprocal interaction constants for the L − M and M − L component. Because these contours are approximately equidistant from the origin, the L–M opponent channels have similar sensitivity across the red–green spectral range. Test wavelengths between 550 and 580 nm are detected by an L–M nonopponent channel. Converting the mean ITSS data for 15 monkeys on a 3,000-Td white background to cone-contrast coordinates indicated a luminance contrast (i.e., δM/M = δL/L) of ≈0.8%, a chromatic contrast (i.e., 0° vector) for the L − M detection contour of 0.14%, and, for the M − L detection contour (i.e., 90° vector), a chromatic contrast of 0.25%. If the data in the red and green spectral ranges were fitted independently, the L − M detection contour had a slope of 0.88 and the M − L detection contour a slope of 0.81.

Fig. 11
Fig. 11

Cone contrast for the length of the 0° vector as a function of adapting-field intensity. Note the improvement of cone contrast with increases in the level of adaptation and the asymptotic behavior at higher light levels. The calculations were based on the mean data provided in Table 2 (plotted as circles) from the transformed data for the 30-, 300-, 3000- and 30,000-Td backgrounds (plotted as squares) for subject B2.

Tables (2)

Tables Icon

Table 1 Interaction Value Predicted by First-Site Adaptation, Alone, for the L–M Opponent (k1fs) or L–M Nonopponent (k2fs) Channels as a Function of Adapting-Field Wavelength

Tables Icon

Table 2 Summary of the Parameters Required to Predict the Shape of the ITSS Function at Different Intensity Levels for an Achromatic Backgrounda

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L f = 400 700 Q b * L rqs d λ ,
M f = 400 700 Q b * M rqs d λ ,
S f = 400 570 Q b * S rqs d λ .
Opp Chan = Log ( ABS { [ L ( k 1 * M ) ] ± ( S 1 * S ) } ) + Log ( S S 1 ) ,
Nonopp Chan = Log ( ABS { [ L + ( k 2 * M ) ] ± ( S 2 * S ) } ) + Log ( S S 2 ) ,
S Chan = Log ABS ( S ) + Log ( S S 3 ) .
δ L / L ( λ ) = test threshold ( λ ) * L rqs ( λ ) L f ,
δ M / M ( λ ) = test threshold ( λ ) * M rqs ( λ ) M f ,
δ S / S ( λ ) = test threshold ( λ ) * S rqs ( λ ) S f .
k 1 = k 1 fs / slope of the L M or M L contours ,
k 2 = k 2 fs / ABS ( slope of the L + M contours ) .
δ I = A * ( 1 + I / I e ) n ,

Metrics