Abstract

Gabor x-ray holograms of biological specimens and of test objects that display ≤56–nm resolution are presented. This spatial resolution is more than an order of magnitude smaller than what has been achieved previously in x-ray holography. The holograms were recorded on photoresist using 2.57-nm soft x rays from the X–17t undulator at the National Syncrotron Light Source at Brookhaven National Laboratory. The processed photoresists were enlarged with an electron microscope and digitized using a scanning microdensitometer; the digitized holograms were reconstructed numerically. The exposure requirements were in good agreement with simple theory. The method offers promise as a technique for soft-x-ray microscopy.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
    [Crossref]
  2. A. Tonomura, “Applications of electron holography,” Rev. Mod. Phys. 59, 639–668 (1987).
    [Crossref]
  3. Recent results in x-ray microscopy are reported in D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., X-ray Microscopy II (Springer-Verlag, Berlin, 1988).
    [Crossref]
  4. E. A. Anderson, “Fabrication technology and applications of zone plates,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 2–11 (1989).
    [Crossref]
  5. See, e.g., E. Spiller, “Soft x-ray optics and microscopy,” in Handbook on Synchrotron Radiation, E. E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. 1, pp. 1091–1129; J. Kirz, H. Rarback, “Soft x-ray microscopes,” Rev. Sci. Instrum. 56, 1–13 (1985).
    [Crossref]
  6. M. R. Howells, “Soft x-ray imaging for the life sciences,” in Biophysics and Synchrotron Radiation, S. Hasnain, ed. (Ellis Horwood, Chichester, UK1990; also available as Lawrence Berkeley Laboratory Rep. LBL–27420)3390602.
  7. A. V. Baez, “A study in diffraction microscopy with special reference to x-rays,” J. Opt. Soc. Am. 42, 756–762 (1952).
    [Crossref]
  8. Work in x-ray holography before 1974 is described in Ref. 9, and work through 1985 is described in Ref. 11 below. A more detailed description of work to the present is given in C. Jacobsen, “X-ray holography: a history,” in X-Ray Microscopy in Biology and Medicine, K. Shinohara, K. Yada, H. Kihara, T. Saito, eds. (Japan Scientific Societies Press, Tokyo, 1990), pp. 167–177.
  9. S. Aoki, S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).
    [Crossref]
  10. B. Reuter, H. Mahr, “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746–751 (1976).
    [Crossref]
  11. M. R. Howells, M. A. Iarocci, J. Kirz, “Experiments in x-ray holographic microscopy using synchrotron radiation,” J. Opt. Soc. Am. A 3, 2171–2178 (1986).
    [Crossref]
  12. G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
    [Crossref]
  13. S. Aoki, S. Kikuta, “Soft x-ray interferometry and holography,” in Short Wavelength Coherent Radiation: Generation and Applications, D. T. Attwood, J. Bokor, eds., AIP Conf. Proc.147, 49–56 (1986).
  14. D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
    [Crossref]
  15. D. Joyeux, F. Polack, “Progress in optical reconstruction of submicron x-ray holograms,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, J. Kirz, R. Falcone, chairs (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 295–302.
  16. M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
    [Crossref] [PubMed]
  17. C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
    [Crossref]
  18. C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.
  19. C. Jacobsen, “X-ray holographic microscopy of biological specimens using an undulator,” Ph.D. dissertation (State University of New York at Stony Brook, Stony Brook, N.Y., 1988).
  20. H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. 10, 94–114 (1952).
    [Crossref]
  21. D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
    [Crossref] [PubMed]
  22. G. Schmahl, D. Rudolph, “Proposal for a phase contrast x-ray microscope,” in X-ray Microscopy: Instrumentation and Biological Applications, P. C. Cheng, G. J. Jan, eds. (Springer-Verlag, Berlin, 1987), pp. 231–238.
  23. J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); J. C. Solem, “Imaging biological specimens with high-intensity soft x-rays,” J. Opt. Soc. Am. B 3, 1551–1565 (1986).
    [Crossref] [PubMed]
  24. R. A. London, M. D. Rosen, J. E. Trebes, “Wavelength choice for soft x-ray laser holography of biological samples,” Appl. Opt. 28, 3397–3404 (1989).
    [Crossref] [PubMed]
  25. M. R. Howells, “Fundamental limits in x-ray holography,” in X-ray Microscopy II, D. Sayre, M. R. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 263–271.
    [Crossref]
  26. B. L. Henke, “Low energy x-ray interactions: photoionization, scattering, specular and Bragg reflection,” in Low Energy X-ray Diagnostics, D. T. Attwood, B. L. Henke, eds., AIP Conf. Proc.75, 146–155 (1981).
  27. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
    [Crossref]
  28. J. R. Breedlove, G. T. Trammel, “Molecular microscopy: fundamental limitations,” Science 170, 1310–1313 (1970).
    [Crossref] [PubMed]
  29. R. Mueller, S. Joma, “Intensity requirements in x-ray holography at 1 Å,” Appl. Opt. 16, 525–526 (1977); R. Mueller in “X-ray laser applications study,” S. Joma, ed., Physical Dynamics Rep. PD-LJ-76-132 (Physical Dynamics, La Jolla, Calif., 1976), Sec. 7.
    [Crossref] [PubMed]
  30. R. M. Glaeser, K. A. Taylor, “Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review,” J. Microsc. 112, 127–138 (1978).
    [Crossref] [PubMed]
  31. E. Spiller, R. Feder, “X-ray lithography,” in X-ray Optics, H.-J. Queisser, ed., Vol. 22 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 35–92.
    [Crossref]
  32. A. Rose, “Unified approach to performance of photographic film, television pickup tubes, and human eye,” J. Soc. Motion Pict. Eng. 47, 273–294 (1946).
  33. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature (London) 166, 237 (1950); “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh Ser. A Part III 63, 193–221 (1950).
    [Crossref]
  34. In fact, the requirement that (λ/Δλ) ≥ Nzpmay be relaxed somewhat without seriously affecting zone-plate modulation transfer function. See, e.g., J. Thieme, “Theoretical investigations of imaging properties of zone plates and zone plate systems using diffraction theory,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 70–79.
    [Crossref]
  35. See, e.g., Eq. (10.4.29) of M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  36. J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
    [Crossref] [PubMed]
  37. D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).
  38. K.-J. Kim, “Brightness, coherence and propagation characteristics of synchrotron radiation,” Nucl. Instrum. Methods A246, 71–76 (1986).
  39. See, e.g., S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of synchrotron radiation and of its sources,” in Handbook of Synchrotron Radiation, E.-E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. IA, Chap. 2.
  40. H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).
  41. R. DiGennaro, T. Swain, “Engineering for high heat loads on ALS beam lines,” Nucl. Instrum. Methods A291, 313–318 (1990).
  42. M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
    [Crossref]
  43. W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
    [Crossref] [PubMed]
  44. M. Hatzakis, “Electron resists for microcircuit and mask production,” J. Electrochem. Soc. 116, 1033–1037 (1969).
    [Crossref]
  45. I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
    [Crossref]
  46. D. L. Spears, H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett. 8, 102–104 (1972); “X-ray lithography—a new high resolution replication process,” Solid State Technol. 15(7), 21–26 (1972); R. Feder, IBM Rep. TR22.1065 (IBM, Yorktown Heights, N.Y., 1970).
    [Crossref]
  47. R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
    [Crossref] [PubMed]
  48. D. M. Shinozaki, “High resolution image storage in polymers,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 118–123.
    [Crossref]
  49. R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
    [Crossref]
  50. D. Sayre, R. Feder, “Exposure and development of x-ray resist in microscopy,” IBM Research Rep. RC-7498 (IBM, Yorktown Heights, N.Y., 1979).
  51. P. Dunn, B. J. Thompson, “Object shape, fringe visibility, and resolution in far-field holography,” Opt. Eng. 21, 327–332 (1982).
    [Crossref]
  52. M. R. Howells, “Possibilities for x-ray holography using synchrotron radiation,” in X-Ray Microscopy, G. Schmahl, D. Rudolph, eds. (Springer-Verlag, Berlin, 1984), pp. 318–335.
    [Crossref]
  53. R. Feder, D. Sayre, “Recent developments in x-ray contact microscopy,” Ann. NY Acad. Sci. 342, 213–225 (1980).
    [Crossref]
  54. R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
    [Crossref]
  55. C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).
  56. J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  57. G. Liu, P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987).
    [Crossref]
  58. See, e.g., R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Sec. 12.1.
  59. L. Onural, “Digital decoding of in-line holograms,” Ph.D. dissertation (State University of New York at Buffalo, 1985; L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
    [Crossref]
  60. T. H. Ermak, S. S. Rothman, “Internal organization of the zymogen granule: formation of reticular structures in vitro,” J. Ultrastructure Res. 64, 98–113 (1978).
    [Crossref]
  61. S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
    [Crossref] [PubMed]
  62. C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.
  63. J. Underwood, Center for X-Ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (personal communication).
  64. G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976).
    [Crossref]
  65. See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
    [Crossref]
  66. G. W. Stroke, D. G. Falconer, “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306–309 (1964); I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M. R. Howells, H. Rarback, “Soft-x-ray microscope using Fourier transform holography,” Nucl. Instrum. Methods A291, 74–79 (1990).
    [Crossref]

1990 (1)

R. DiGennaro, T. Swain, “Engineering for high heat loads on ALS beam lines,” Nucl. Instrum. Methods A291, 313–318 (1990).

1989 (2)

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

R. A. London, M. D. Rosen, J. E. Trebes, “Wavelength choice for soft x-ray laser holography of biological samples,” Appl. Opt. 28, 3397–3404 (1989).
[Crossref] [PubMed]

1988 (1)

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

1987 (6)

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[Crossref]

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

A. Tonomura, “Applications of electron holography,” Rev. Mod. Phys. 59, 639–668 (1987).
[Crossref]

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

G. Liu, P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159–165 (1987).
[Crossref]

1986 (2)

M. R. Howells, M. A. Iarocci, J. Kirz, “Experiments in x-ray holographic microscopy using synchrotron radiation,” J. Opt. Soc. Am. A 3, 2171–2178 (1986).
[Crossref]

K.-J. Kim, “Brightness, coherence and propagation characteristics of synchrotron radiation,” Nucl. Instrum. Methods A246, 71–76 (1986).

1984 (1)

R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
[Crossref]

1982 (3)

P. Dunn, B. J. Thompson, “Object shape, fringe visibility, and resolution in far-field holography,” Opt. Eng. 21, 327–332 (1982).
[Crossref]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); J. C. Solem, “Imaging biological specimens with high-intensity soft x-rays,” J. Opt. Soc. Am. B 3, 1551–1565 (1986).
[Crossref] [PubMed]

1981 (1)

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

1980 (1)

R. Feder, D. Sayre, “Recent developments in x-ray contact microscopy,” Ann. NY Acad. Sci. 342, 213–225 (1980).
[Crossref]

1979 (1)

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

1978 (2)

R. M. Glaeser, K. A. Taylor, “Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review,” J. Microsc. 112, 127–138 (1978).
[Crossref] [PubMed]

T. H. Ermak, S. S. Rothman, “Internal organization of the zymogen granule: formation of reticular structures in vitro,” J. Ultrastructure Res. 64, 98–113 (1978).
[Crossref]

1977 (3)

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

R. Mueller, S. Joma, “Intensity requirements in x-ray holography at 1 Å,” Appl. Opt. 16, 525–526 (1977); R. Mueller in “X-ray laser applications study,” S. Joma, ed., Physical Dynamics Rep. PD-LJ-76-132 (Physical Dynamics, La Jolla, Calif., 1976), Sec. 7.
[Crossref] [PubMed]

1976 (2)

G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976).
[Crossref]

B. Reuter, H. Mahr, “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746–751 (1976).
[Crossref]

1974 (2)

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
[Crossref]

S. Aoki, S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).
[Crossref]

1973 (1)

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).

1972 (1)

D. L. Spears, H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett. 8, 102–104 (1972); “X-ray lithography—a new high resolution replication process,” Solid State Technol. 15(7), 21–26 (1972); R. Feder, IBM Rep. TR22.1065 (IBM, Yorktown Heights, N.Y., 1970).
[Crossref]

1970 (1)

J. R. Breedlove, G. T. Trammel, “Molecular microscopy: fundamental limitations,” Science 170, 1310–1313 (1970).
[Crossref] [PubMed]

1969 (1)

M. Hatzakis, “Electron resists for microcircuit and mask production,” J. Electrochem. Soc. 116, 1033–1037 (1969).
[Crossref]

1967 (1)

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1964 (1)

G. W. Stroke, D. G. Falconer, “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306–309 (1964); I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M. R. Howells, H. Rarback, “Soft-x-ray microscope using Fourier transform holography,” Nucl. Instrum. Methods A291, 74–79 (1990).
[Crossref]

1956 (1)

W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
[Crossref] [PubMed]

1952 (2)

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. 10, 94–114 (1952).
[Crossref]

A. V. Baez, “A study in diffraction microscopy with special reference to x-rays,” J. Opt. Soc. Am. 42, 756–762 (1952).
[Crossref]

1950 (1)

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature (London) 166, 237 (1950); “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh Ser. A Part III 63, 193–221 (1950).
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[Crossref]

1946 (1)

A. Rose, “Unified approach to performance of photographic film, television pickup tubes, and human eye,” J. Soc. Motion Pict. Eng. 47, 273–294 (1946).

Ade, H.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Alferov, D. F.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).

Anderson, E. A.

E. A. Anderson, “Fabrication technology and applications of zone plates,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 2–11 (1989).
[Crossref]

Aoki, S.

S. Aoki, S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).
[Crossref]

S. Aoki, S. Kikuta, “Soft x-ray interferometry and holography,” in Short Wavelength Coherent Radiation: Generation and Applications, D. T. Attwood, J. Bokor, eds., AIP Conf. Proc.147, 49–56 (1986).

Attwood, D.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Baez, A. V.

Baldwin, G. C.

J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); J. C. Solem, “Imaging biological specimens with high-intensity soft x-rays,” J. Opt. Soc. Am. B 3, 1551–1565 (1986).
[Crossref] [PubMed]

Bashmakov, Yu. A.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).

Bastacky, J.

C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.

Bernstein, A.

D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
[Crossref]

Bessonov, E. G.

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).

Bjorklund, G. C.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
[Crossref]

Born, M.

See, e.g., Eq. (10.4.29) of M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Breedlove, J. R.

J. R. Breedlove, G. T. Trammel, “Molecular microscopy: fundamental limitations,” Science 170, 1310–1313 (1970).
[Crossref] [PubMed]

Broers, A. N.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Brown, S. B.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Burckhardt, C. B.

See, e.g., R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Sec. 12.1.

Campbell, E. M.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Chang, T. H. P.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Collier, R. J.

See, e.g., R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Sec. 12.1.

Day, R.

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

DiGennaro, R.

R. DiGennaro, T. Swain, “Engineering for high heat loads on ALS beam lines,” Nucl. Instrum. Methods A291, 313–318 (1990).

Dunn, P.

P. Dunn, B. J. Thompson, “Object shape, fringe visibility, and resolution in far-field holography,” Opt. Eng. 21, 327–332 (1982).
[Crossref]

Ermak, T. H.

T. H. Ermak, S. S. Rothman, “Internal organization of the zymogen granule: formation of reticular structures in vitro,” J. Ultrastructure Res. 64, 98–113 (1978).
[Crossref]

Falconer, D. G.

G. W. Stroke, D. G. Falconer, “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306–309 (1964); I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M. R. Howells, H. Rarback, “Soft-x-ray microscope using Fourier transform holography,” Nucl. Instrum. Methods A291, 74–79 (1990).
[Crossref]

Feder, R.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

R. Feder, D. Sayre, “Recent developments in x-ray contact microscopy,” Ann. NY Acad. Sci. 342, 213–225 (1980).
[Crossref]

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

D. Sayre, R. Feder, “Exposure and development of x-ray resist in microscopy,” IBM Research Rep. RC-7498 (IBM, Yorktown Heights, N.Y., 1979).

E. Spiller, R. Feder, “X-ray lithography,” in X-ray Optics, H.-J. Queisser, ed., Vol. 22 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 35–92.
[Crossref]

Fujikawa, B. F.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[Crossref]

Glaeser, R. M.

R. M. Glaeser, K. A. Taylor, “Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review,” J. Microsc. 112, 127–138 (1978).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Grendell, J.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Gudat, W.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Haelbich, R. P.

R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
[Crossref]

Haller, I.

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

Harris, S. E.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
[Crossref]

Hatzakis, M.

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

M. Hatzakis, “Electron resists for microcircuit and mask production,” J. Electrochem. Soc. 116, 1033–1037 (1969).
[Crossref]

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

B. L. Henke, “Low energy x-ray interactions: photoionization, scattering, specular and Bragg reflection,” in Low Energy X-ray Diagnostics, D. T. Attwood, B. L. Henke, eds., AIP Conf. Proc.75, 146–155 (1981).

Hess, W. M.

W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
[Crossref] [PubMed]

Howells, M.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.

Howells, M. R.

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

M. R. Howells, M. A. Iarocci, J. Kirz, “Experiments in x-ray holographic microscopy using synchrotron radiation,” J. Opt. Soc. Am. A 3, 2171–2178 (1986).
[Crossref]

M. R. Howells, “Soft x-ray imaging for the life sciences,” in Biophysics and Synchrotron Radiation, S. Hasnain, ed. (Ellis Horwood, Chichester, UK1990; also available as Lawrence Berkeley Laboratory Rep. LBL–27420)3390602.

M. R. Howells, “Fundamental limits in x-ray holography,” in X-ray Microscopy II, D. Sayre, M. R. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 263–271.
[Crossref]

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

M. R. Howells, “Possibilities for x-ray holography using synchrotron radiation,” in X-Ray Microscopy, G. Schmahl, D. Rudolph, eds. (Springer-Verlag, Berlin, 1984), pp. 318–335.
[Crossref]

Iarocci, M.

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

Iarocci, M. A.

Iskander, N.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Jacobsen, C.

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

C. Jacobsen, “X-ray holographic microscopy of biological specimens using an undulator,” Ph.D. dissertation (State University of New York at Stony Brook, Stony Brook, N.Y., 1988).

Work in x-ray holography before 1974 is described in Ref. 9, and work through 1985 is described in Ref. 11 below. A more detailed description of work to the present is given in C. Jacobsen, “X-ray holography: a history,” in X-Ray Microscopy in Biology and Medicine, K. Shinohara, K. Yada, H. Kihara, T. Saito, eds. (Japan Scientific Societies Press, Tokyo, 1990), pp. 167–177.

C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.

Joma, S.

Joyeux, D.

D. Joyeux, F. Polack, “Progress in optical reconstruction of submicron x-ray holograms,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, J. Kirz, R. Falcone, chairs (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 295–302.

D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
[Crossref]

Kenney, J.

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

Kern, D.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Kikuta, S.

S. Aoki, S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).
[Crossref]

S. Aoki, S. Kikuta, “Soft x-ray interferometry and holography,” in Short Wavelength Coherent Radiation: Generation and Applications, D. T. Attwood, J. Bokor, eds., AIP Conf. Proc.147, 49–56 (1986).

Kim, D. M.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

Kim, K.-J.

K.-J. Kim, “Brightness, coherence and propagation characteristics of synchrotron radiation,” Nucl. Instrum. Methods A246, 71–76 (1986).

Kirz, J.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

M. R. Howells, M. A. Iarocci, J. Kirz, “Experiments in x-ray holographic microscopy using synchrotron radiation,” J. Opt. Soc. Am. A 3, 2171–2178 (1986).
[Crossref]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

Krinsky, S.

See, e.g., S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of synchrotron radiation and of its sources,” in Handbook of Synchrotron Radiation, E.-E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. IA, Chap. 2.

Ladd, M. W.

W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
[Crossref] [PubMed]

Ladd, W. A.

W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
[Crossref] [PubMed]

Lawrence, R. W.

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

Lin, L. H.

See, e.g., R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Sec. 12.1.

Liu, G.

London, R. A.

Lowenthal, S.

D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
[Crossref]

Mahr, H.

B. Reuter, H. Mahr, “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746–751 (1976).
[Crossref]

Martin, Y.

See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[Crossref]

Matthews, D. L.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

McNulty, I.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

McQuaid, K.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

Mueller, R.

Nagel, D. J.

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

Nilson, D. G.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Onural, L.

L. Onural, “Digital decoding of in-line holograms,” Ph.D. dissertation (State University of New York at Buffalo, 1985; L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[Crossref]

Panessa, B. J.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Perlman, M. L.

See, e.g., S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of synchrotron radiation and of its sources,” in Handbook of Synchrotron Radiation, E.-E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. IA, Chap. 2.

Polack, F.

D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
[Crossref]

D. Joyeux, F. Polack, “Progress in optical reconstruction of submicron x-ray holograms,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, J. Kirz, R. Falcone, chairs (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 295–302.

Rarback, H.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

Reuter, B.

B. Reuter, H. Mahr, “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746–751 (1976).
[Crossref]

Rogers, G. L.

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature (London) 166, 237 (1950); “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh Ser. A Part III 63, 193–221 (1950).
[Crossref]

Rose, A.

A. Rose, “Unified approach to performance of photographic film, television pickup tubes, and human eye,” J. Soc. Motion Pict. Eng. 47, 273–294 (1946).

Rosen, M. D.

Rothman, S.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.

Rothman, S. S.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

T. H. Ermak, S. S. Rothman, “Internal organization of the zymogen granule: formation of reticular structures in vitro,” J. Ultrastructure Res. 64, 98–113 (1978).
[Crossref]

Rudolph, D.

G. Schmahl, D. Rudolph, “Proposal for a phase contrast x-ray microscope,” in X-ray Microscopy: Instrumentation and Biological Applications, P. C. Cheng, G. J. Jan, eds. (Springer-Verlag, Berlin, 1987), pp. 231–238.

Saloman, E. B.

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

Sayre, D.

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

R. Feder, D. Sayre, “Recent developments in x-ray contact microscopy,” Ann. NY Acad. Sci. 342, 213–225 (1980).
[Crossref]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

D. Sayre, R. Feder, “Exposure and development of x-ray resist in microscopy,” IBM Research Rep. RC-7498 (IBM, Yorktown Heights, N.Y., 1979).

Schmahl, G.

G. Schmahl, D. Rudolph, “Proposal for a phase contrast x-ray microscope,” in X-ray Microscopy: Instrumentation and Biological Applications, P. C. Cheng, G. J. Jan, eds. (Springer-Verlag, Berlin, 1987), pp. 231–238.

Scott, P. D.

Sedat, J.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

Shinozaki, D. M.

D. M. Shinozaki, “High resolution image storage in polymers,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 118–123.
[Crossref]

Silverman, J. P.

R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
[Crossref]

Smith, H. I.

D. L. Spears, H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett. 8, 102–104 (1972); “X-ray lithography—a new high resolution replication process,” Solid State Technol. 15(7), 21–26 (1972); R. Feder, IBM Rep. TR22.1065 (IBM, Yorktown Heights, N.Y., 1970).
[Crossref]

Solem, J. C.

J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); J. C. Solem, “Imaging biological specimens with high-intensity soft x-rays,” J. Opt. Soc. Am. B 3, 1551–1565 (1986).
[Crossref] [PubMed]

Spears, D. L.

D. L. Spears, H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett. 8, 102–104 (1972); “X-ray lithography—a new high resolution replication process,” Solid State Technol. 15(7), 21–26 (1972); R. Feder, IBM Rep. TR22.1065 (IBM, Yorktown Heights, N.Y., 1970).
[Crossref]

Spiller, E.

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

E. Spiller, R. Feder, “X-ray lithography,” in X-ray Optics, H.-J. Queisser, ed., Vol. 22 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 35–92.
[Crossref]

See, e.g., E. Spiller, “Soft x-ray optics and microscopy,” in Handbook on Synchrotron Radiation, E. E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. 1, pp. 1091–1129; J. Kirz, H. Rarback, “Soft x-ray microscopes,” Rev. Sci. Instrum. 56, 1–13 (1985).
[Crossref]

Stone, G. F.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Stroke, G. W.

G. W. Stroke, D. G. Falconer, “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306–309 (1964); I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M. R. Howells, H. Rarback, “Soft-x-ray microscope using Fourier transform holography,” Nucl. Instrum. Methods A291, 74–79 (1990).
[Crossref]

Swain, T.

R. DiGennaro, T. Swain, “Engineering for high heat loads on ALS beam lines,” Nucl. Instrum. Methods A291, 313–318 (1990).

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

Taylor, K. A.

R. M. Glaeser, K. A. Taylor, “Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review,” J. Microsc. 112, 127–138 (1978).
[Crossref] [PubMed]

Thieme, J.

In fact, the requirement that (λ/Δλ) ≥ Nzpmay be relaxed somewhat without seriously affecting zone-plate modulation transfer function. See, e.g., J. Thieme, “Theoretical investigations of imaging properties of zone plates and zone plate systems using diffraction theory,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 70–79.
[Crossref]

Thompson, B. J.

P. Dunn, B. J. Thompson, “Object shape, fringe visibility, and resolution in far-field holography,” Opt. Eng. 21, 327–332 (1982).
[Crossref]

G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976).
[Crossref]

Tonomura, A.

A. Tonomura, “Applications of electron holography,” Rev. Mod. Phys. 59, 639–668 (1987).
[Crossref]

Topalian, J.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Trammel, G. T.

J. R. Breedlove, G. T. Trammel, “Molecular microscopy: fundamental limitations,” Science 170, 1310–1313 (1970).
[Crossref] [PubMed]

Trebes, J. E.

R. A. London, M. D. Rosen, J. E. Trebes, “Wavelength choice for soft x-ray laser holography of biological samples,” Appl. Opt. 28, 3397–3404 (1989).
[Crossref] [PubMed]

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Tyler, G. A.

G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976).
[Crossref]

Underwood, J.

J. Underwood, Center for X-Ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (personal communication).

Vladimirsky, Y.

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Warlaumont, J. M.

R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
[Crossref]

Watson, R. E.

See, e.g., S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of synchrotron radiation and of its sources,” in Handbook of Synchrotron Radiation, E.-E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. IA, Chap. 2.

Whelan, D. A.

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

Wickramasinghe, H. K.

See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[Crossref]

Williams, C. C.

See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[Crossref]

Wolf, E.

See, e.g., Eq. (10.4.29) of M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Wolter, H.

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. 10, 94–114 (1952).
[Crossref]

Young, J. F.

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
[Crossref]

Zadunaisky, Z. A.

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Ann. NY Acad. Sci. (1)

R. Feder, D. Sayre, “Recent developments in x-ray contact microscopy,” Ann. NY Acad. Sci. 342, 213–225 (1980).
[Crossref]

Ann. Phys. (1)

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen,” Ann. Phys. 10, 94–114 (1952).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. C. Bjorklund, S. E. Harris, J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974); G. C. Bjorklund, “Vacuum ultraviolet holography,” Ph.D. dissertation, Microwave Laboratory Rep. 2339 (Stanford University, Stanford, Calif., 1974).
[Crossref]

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. F. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982); B. L. Henke, J. C. Davis, E. M. Gullikson, R. C. C. Perera, “A preliminary report on x-ray photoabsorption coefficients and atomic scattering factors for 92 elements in the 10–10,000 eV region,” Lawrence Berkeley Laboratory Rep. LBL–26259 (Lawrence Berkeley Laboratory, Berkeley, Calif., November1988)3390602.
[Crossref]

Biochim. Biophys. Acta (1)

S. S. Rothman, N. Iskander, D. Attwood, Y. Vladimirsky, K. McQuaid, J. Grendell, J. Kirz, H. Ade, I. McNulty, D. Kern, T. H. P. Chang, H. Rarback, “The interior of a whole and unmodified biological object—the zymogen granule—viewed with a high resolution x-ray microscope,” Biochim. Biophys. Acta 991, 484–486 (1989).
[Crossref] [PubMed]

Electron. Lett. (1)

D. L. Spears, H. I. Smith, “High-resolution pattern replication using soft x-rays,” Electron. Lett. 8, 102–104 (1972); “X-ray lithography—a new high resolution replication process,” Solid State Technol. 15(7), 21–26 (1972); R. Feder, IBM Rep. TR22.1065 (IBM, Yorktown Heights, N.Y., 1970).
[Crossref]

J. Appl. Phys. (2)

See, e.g., Y. Martin, C. C. Williams, H. K. Wickramasinghe, “Atomic force microscope—force mapping and profiling on a sub 100–Å scale,” J. Appl. Phys. 61, 4723–4729 (1987).
[Crossref]

R. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric quantum efficiencies and filter window absorption coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965–6973 (1981).
[Crossref]

J. Electrochem. Soc. (2)

M. Hatzakis, “Electron resists for microcircuit and mask production,” J. Electrochem. Soc. 116, 1033–1037 (1969).
[Crossref]

I. Haller, R. Feder, M. Hatzakis, E. Spiller, “Copolymers of methyl methacrylate and methacrylic acid and their metal salts as radiation sensitive resists,” J. Electrochem. Soc. 126, 154–161 (1979).
[Crossref]

J. Microsc. (1)

R. M. Glaeser, K. A. Taylor, “Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review,” J. Microsc. 112, 127–138 (1978).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

C. Jacobsen, J. Kirz, M. R. Howells, R. Feder, D. Sayre, “Experiments in soft x-ray near-field diffraction imaging with an undulator,” J. Opt. Soc. Am. B 4, P182–P184 (1987).

J. Phys. E (1)

B. Reuter, H. Mahr, “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746–751 (1976).
[Crossref]

J. Soc. Motion Pict. Eng. (1)

A. Rose, “Unified approach to performance of photographic film, television pickup tubes, and human eye,” J. Soc. Motion Pict. Eng. 47, 273–294 (1946).

J. Ultrastructure Res. (1)

T. H. Ermak, S. S. Rothman, “Internal organization of the zymogen granule: formation of reticular structures in vitro,” J. Ultrastructure Res. 64, 98–113 (1978).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Aoki, S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).
[Crossref]

Nature (London) (2)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[Crossref]

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature (London) 166, 237 (1950); “Experiments in diffraction microscopy,” Proc. R. Soc. Edinburgh Ser. A Part III 63, 193–221 (1950).
[Crossref]

Nucl. Instrum. Methods (3)

K.-J. Kim, “Brightness, coherence and propagation characteristics of synchrotron radiation,” Nucl. Instrum. Methods A246, 71–76 (1986).

H. Rarback, C. Jacobsen, J. Kirz, I. McNulty, “The performance of the NSLS mini-undulator,” Nucl. Instrum. Methods A266, 96–105 (1988).

R. DiGennaro, T. Swain, “Engineering for high heat loads on ALS beam lines,” Nucl. Instrum. Methods A291, 313–318 (1990).

Nucl. Instrum. Methods Phys. Res. (1)

R. P. Haelbich, J. P. Silverman, J. M. Warlaumont, “Synchrotron radiation x-ray lithography,” Nucl. Instrum. Methods Phys. Res. 222, 291–301 (1984).
[Crossref]

Opt. Acta (1)

G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976).
[Crossref]

Opt. Eng. (1)

P. Dunn, B. J. Thompson, “Object shape, fringe visibility, and resolution in far-field holography,” Opt. Eng. 21, 327–332 (1982).
[Crossref]

Phys. Lett. (1)

G. W. Stroke, D. G. Falconer, “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306–309 (1964); I. McNulty, J. Kirz, C. Jacobsen, E. Anderson, M. R. Howells, H. Rarback, “Soft-x-ray microscope using Fourier transform holography,” Nucl. Instrum. Methods A291, 74–79 (1990).
[Crossref]

Rev. Mod. Phys. (1)

A. Tonomura, “Applications of electron holography,” Rev. Mod. Phys. 59, 639–668 (1987).
[Crossref]

Science (7)

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-ray holography at improved resolution: a study of zymogen granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

J. E. Trebes, S. B. Brown, E. M. Campbell, D. L. Matthews, D. G. Nilson, G. F. Stone, D. A. Whelan, “Demonstration of x-ray holography with an x-ray laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

J. C. Solem, G. C. Baldwin, “Microholography of living organisms,” Science 218, 229–235 (1982); J. C. Solem, G. F. Chapline, “X-ray biomicroholography,” Opt. Eng. 23, 193–203 (1984); J. C. Solem, “Imaging biological specimens with high-intensity soft x-rays,” J. Opt. Soc. Am. B 3, 1551–1565 (1986).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339–1340 (1977); “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ultramicroscopy 2, 337–341 (1977).
[Crossref] [PubMed]

J. R. Breedlove, G. T. Trammel, “Molecular microscopy: fundamental limitations,” Science 170, 1310–1313 (1970).
[Crossref] [PubMed]

W. A. Ladd, W. M. Hess, M. W. Ladd, “High-resolution microradiography,” Science 123, 370–371 (1956).
[Crossref] [PubMed]

R. Feder, E. Spiller, J. Topalian, A. N. Broers, W. Gudat, B. J. Panessa, Z. A. Zadunaisky, J. Sedat, “High-resolution soft x-ray microscopy,” Science 197, 259–260 (1977).
[Crossref] [PubMed]

Sov. Phys. Tech. Phys. (1)

D. F. Alferov, Yu. A. Bashmakov, E. G. Bessonov, “Radiation of relativistic particles in an undulator,” Sov. Phys. Tech. Phys. 17, 1540–1543 (1973).

Other (26)

E. Spiller, R. Feder, “X-ray lithography,” in X-ray Optics, H.-J. Queisser, ed., Vol. 22 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977), pp. 35–92.
[Crossref]

In fact, the requirement that (λ/Δλ) ≥ Nzpmay be relaxed somewhat without seriously affecting zone-plate modulation transfer function. See, e.g., J. Thieme, “Theoretical investigations of imaging properties of zone plates and zone plate systems using diffraction theory,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 70–79.
[Crossref]

See, e.g., Eq. (10.4.29) of M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

M. R. Howells, “Fundamental limits in x-ray holography,” in X-ray Microscopy II, D. Sayre, M. R. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 263–271.
[Crossref]

B. L. Henke, “Low energy x-ray interactions: photoionization, scattering, specular and Bragg reflection,” in Low Energy X-ray Diagnostics, D. T. Attwood, B. L. Henke, eds., AIP Conf. Proc.75, 146–155 (1981).

G. Schmahl, D. Rudolph, “Proposal for a phase contrast x-ray microscope,” in X-ray Microscopy: Instrumentation and Biological Applications, P. C. Cheng, G. J. Jan, eds. (Springer-Verlag, Berlin, 1987), pp. 231–238.

C. Jacobsen, J. Kirz, M. Howells, K. McQuaid, S. Rothman, R. Feder, D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in X-ray Microscopy II, D. Sayre, M. R. Howells, K. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 253–262.
[Crossref]

C. Jacobsen, M. Howells, J. Kirz, K. McQuaid, S. Rothman, “X-ray holographic microscopy: improved images of zymogen granules,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 303–308.

C. Jacobsen, “X-ray holographic microscopy of biological specimens using an undulator,” Ph.D. dissertation (State University of New York at Stony Brook, Stony Brook, N.Y., 1988).

S. Aoki, S. Kikuta, “Soft x-ray interferometry and holography,” in Short Wavelength Coherent Radiation: Generation and Applications, D. T. Attwood, J. Bokor, eds., AIP Conf. Proc.147, 49–56 (1986).

D. Joyeux, S. Lowenthal, F. Polack, A. Bernstein, “X-ray microscopy by holography at LURE,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 246–252.
[Crossref]

D. Joyeux, F. Polack, “Progress in optical reconstruction of submicron x-ray holograms,” in OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, J. Kirz, R. Falcone, chairs (Optical Society of America, Washington, D.C., 1988), Vol. 2, pp. 295–302.

Recent results in x-ray microscopy are reported in D. Sayre, M. Howells, J. Kirz, H. Rarback, eds., X-ray Microscopy II (Springer-Verlag, Berlin, 1988).
[Crossref]

E. A. Anderson, “Fabrication technology and applications of zone plates,” in X-Ray/EUV Optics for Astronomy and Microscopy, R. Hoover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1160, 2–11 (1989).
[Crossref]

See, e.g., E. Spiller, “Soft x-ray optics and microscopy,” in Handbook on Synchrotron Radiation, E. E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. 1, pp. 1091–1129; J. Kirz, H. Rarback, “Soft x-ray microscopes,” Rev. Sci. Instrum. 56, 1–13 (1985).
[Crossref]

M. R. Howells, “Soft x-ray imaging for the life sciences,” in Biophysics and Synchrotron Radiation, S. Hasnain, ed. (Ellis Horwood, Chichester, UK1990; also available as Lawrence Berkeley Laboratory Rep. LBL–27420)3390602.

Work in x-ray holography before 1974 is described in Ref. 9, and work through 1985 is described in Ref. 11 below. A more detailed description of work to the present is given in C. Jacobsen, “X-ray holography: a history,” in X-Ray Microscopy in Biology and Medicine, K. Shinohara, K. Yada, H. Kihara, T. Saito, eds. (Japan Scientific Societies Press, Tokyo, 1990), pp. 167–177.

D. M. Shinozaki, “High resolution image storage in polymers,” in X-ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 118–123.
[Crossref]

M. R. Howells, M. Iarocci, J. Kenney, J. Kirz, H. Rarback, “X-ray holographic microscopy experiments at the Brookhaven synchrotron light source,” in Science with Soft X-Rays, F. H. Himpsel, R. W. Klaffky, eds., Proc. Soc. Photo-Opt. Instrum. Eng.447, 193–203 (1984).
[Crossref]

See, e.g., S. Krinsky, M. L. Perlman, R. E. Watson, “Characteristics of synchrotron radiation and of its sources,” in Handbook of Synchrotron Radiation, E.-E. Koch, ed. (North-Holland, Amsterdam, 1983), Vol. IA, Chap. 2.

M. R. Howells, “Possibilities for x-ray holography using synchrotron radiation,” in X-Ray Microscopy, G. Schmahl, D. Rudolph, eds. (Springer-Verlag, Berlin, 1984), pp. 318–335.
[Crossref]

D. Sayre, R. Feder, “Exposure and development of x-ray resist in microscopy,” IBM Research Rep. RC-7498 (IBM, Yorktown Heights, N.Y., 1979).

See, e.g., R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), Sec. 12.1.

L. Onural, “Digital decoding of in-line holograms,” Ph.D. dissertation (State University of New York at Buffalo, 1985; L. Onural, P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).
[Crossref]

C. Jacobsen, M. Howells, S. Rothman, J. Bastacky, “X-ray holography: early experience in microimaging,” in X-ray Microimaging for the Life Sciences, D. Attwood, B. Barton, eds. Lawrence Berkeley Laboratory Rep. LBL–27660 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1989), pp. 69–73.

J. Underwood, Center for X-Ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (personal communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the NSLS X–17t undulator beamline used for recording x-ray holograms. The electron beam within the undulator was stabilized using a feedback system driven by photon-beam position monitors. Temporal coherence was provided by a toroidal grating monochromator, and spatial coherence was obtained by using a pinhole. The transition from the 10−9-Torr vacuum of the NSLS x–ray ring to the 10−2-Torr vacuum of the holography chamber was accomplished through the use of a 100-nm-thick Al contamination barrier and a 120-nm-thick Si3N4 vacuum window.

Fig. 2
Fig. 2

Arrangement of the specimen and photoresists used for recording x-ray holograms. The use of silicon nitride windows for supporting the photoresist allowed several holograms to be recorded 7 simultaneously at different working distances and also allowed for subsequent hologram enlargement using a transmission electron microscope.

Fig. 3
Fig. 3

Electron micrograph of an x-ray hologram of zymogen granules. Shown is a 99 μm × 80 μm field of the 100 μm × 200 μm hologram. The specimen was placed on a carbon-reinforced Formvar film that was, in turn, supported by a 200–mesh copper grid, such as that used in transmission electron microscopes. The unexposed resist behind the grid bars shows up as the solid black areas in this micrograph.

Fig. 4
Fig. 4

Electron film transmittance calculated as a function of x-ray exposure incident upon the photoresist PMMA. The calculation parameters were for a 0.2-μm resist exposed to 2.57-nm x rays, developed for 1 min in methyl isobutyl ketone—isopropyl alcohol (MIBK:IPA) 1:5, and enlarged using a 100-keV TEM. The response of the processed photoresist is approximately linear over a limited range of incident x-ray intensities.

Fig. 5
Fig. 5

Power spectral density of a section of an x-ray hologram (top) and of an unexposed region of an identically processed photoresist (bottom). Both power spectra were obtained by taking the two-dimensional Fourier transform of a selected image area and averaging the magnitudes squared over all pixels at a given radius. The signal-to-noise ratio is better than 5:1 at a fringe width of 16 nm.

Fig. 6
Fig. 6

X-ray hologram transmittance (bottom), reconstructed image optical density (middle), and calculated image intensity (top) for an x-ray hologram of a copper grid bar. In the reconstructed image, the optical intensity drops from near maximum to near minimum value over reconstructed image intensity over one to two 28-nm pixels, so that we believe that our system resolution is 2 × 28 = 56 nm or better.

Fig. 7
Fig. 7

Optical micrograph of fixed, air-dried, but unstained and unsectioned zymogen granules. A 11.5 μm × 11.5 μm field from a larger micrograph is shown. A 400× objective was used with a numerical aperture of 0.95; the diffraction-limited resolution of the micrograph is therefore about 0.4 μm, so that only the general outline of the ~0.6 μm-sized granules is visible. The microscope was focused on the two smaller granule clumps at the bottom of the image; the larger clump at the top is out of focus owing to waviness in the supporting Formvar film. The crackled pattern on the image background is due to the carbon-reinforced Formvar film. The granule clump at center right is the same one shown in Figs. 8 and 9.

Fig. 8
Fig. 8

(a) Digitized x-ray hologram and (b) its reconstructed image. The image at the left is of the center 368 × 368 pixels of a 1024 × 1024 pixel sampling of the hologram of Fig. 3. The center 368 × 368 pixels of the reconstructed image are shown at the right; this image is of the granule clump indicated in the optical micrograph of Fig. 7. The hologram pixel size is Δζ = 34.7 nm over a field of 13 μm × 13 μm, while the reconstructed image pixel size is Δx = 29.9 nm over a field of 11 × 11 μm. Individual granules are clearly resolved in the reconstructed image, which emerges rather dramatically from the hologram.

Fig. 9
Fig. 9

Magnified view of the image reconstructed from the x-ray hologram. The 150 × 150 pixel, 1.1 μm × 1.1 μm field selected shows a few granules from the lower-right-hand corner of the right-hand granule clump of Fig. 8(b). The image was pixel replicated 4× by Fourier transforming the image, padding the transformed array by embedding it in a 4× larger array, and inverse Fourier transforming the larger array. This process eliminated the distracting appearance of pixel edges in the image without introducing any information at spatial frequencies not present in the image data.

Fig. 10
Fig. 10

Line scans of optical intensity across the reconstructed image of the right-hand granule clump of Fig. 8. The image was pixel replicated 2× with the same procedure used in Fig. 9 before the line scans were extracted, so that the pixel step size here is 15 nm. Images of granules are indicated by G’s. In several cases, the optical intensity makes a transition from the clear area outside a granule to the opaque area within a granule over a distance of 60–75 nm, indicating an image resolution at or below this value. This is consistent with the 56-nm system resolution determined from the grid-bar edge sharpness shown in Fig. 6.

Fig. 11
Fig. 11

Focal series reconstructions of the x-ray hologram shown in Fig. 8. The upper-left-hand reconstruction (a 1.9 μm × 1.9 μm subfield reconstructed from the full hologram data set) is at a working distance of 410 μm; the lower left is at 412 μm; the upper center is at 414 μm; the lower center is at 416 μm; the upper right is at 418 μm; and the lower right reconstruction is at 420 μm. These 2-μm increments in assumed working distance between the images are approximately half the estimated 3.6-μm diffraction-limited longitudinal resolution of the hologram. The focal series shows that, while interpretation of a few of the structures in the image at the selected focus of z = 412 may be complicated by de-focus artifacts, most granule features remain unchanged as a function of focus.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

P ( X , Y ) = sin ( X ) X sin ( Y ) Y ,
K = k 0 k ,
K x 2 + K y 2 + ( K z + k 0 ) 2 = k 0 2 .
K x , max = 2 π / ( 2 δ x ) = 2 π sin α / λ .
K x , max 2 + k 0 2 = ( K z , max + k 0 ) 2 ,
K z , max = K x , max 2 2 k 0
σ s = 8 π 3 r e 2 ( f 1 2 + f 2 2 ) ,
σ a = 2 r e λ f 2 .
n ¯ f ¯ 1 = z n z f 1 , z , n ¯ f ¯ 2 = z n z f 2 , z ,
σ s / σ a = ( 4 π / 3 ) r e λ ( f 1 2 + f 2 2 ) / f 2 .
F ˜ ( K ) = j = 1 M ( f ¯ 1 j + i f ¯ 2 j ) exp ( i K · d j ) ,
s = M 2 aperture d σ s d Ω d Ω = ( n ¯ π 3 δ t 3 sin α ) 2 r e 2 ( f ¯ 1 2 + f ¯ 2 2 ) π sin 2 α = σ s π 2 24 n 2 δ t 6 ,
a = σ a · n ¯ δ t 2 δ l .
s a = 0.61 π 36 r e f ¯ 1 2 + f ¯ 2 2 f ¯ 2 n ¯ δ t 2 .
E ( | t m n | 2 ) = ( 1 + P m n ) N 0 ,
DQE = ( SNR output / SNR input ) 2 ,
P m n N 0 = s δ t 2 .
2 δ t 2 0.7.
r zp = f sin α = 0.61 ( λ f / δ t ) .
2 N zp = ( r N 2 / λ f ) .
N zp [ ( 0.61 ) 2 λ f ] / 2 δ t 2 .
| μ 1,2 | = [ 2 J 1 ( ν ) ] / ν ,
ν = ( 2 π ρ θ ) / λ .
ψ ( x , y ) = τ ( ξ , η ) exp ( i k r ) i λ r d ξ d η ,
r 2 = z 2 + ( ξ x ) 2 + ( n y ) 2 .
ψ ( x , y ) = 1 i λ z exp ( i 2 π z λ ) exp ( i π x 2 + y 2 λ z ) × [ τ ( ξ , η ) exp ( i π ξ 2 + η 2 λ z ) exp ( i 2 π ξ x + η y λ z ) ] d ξ d η .
1 a 0 a ( ξ , η ) = τ ( ξ , η ) ,
Δ x Δ ξ N λ z = 1 ,
ψ ( Δ x K , Δ x L ) = exp ( i 2 π z λ ) ( ( 1 a 0 ) + i Δ ξ 2 λ z exp [ i π Δ x 2 λ z ( K 2 + L 2 ) ] exp [ i π ( K + L ) ] × DFT { a ( Δ ξ K , Δ ξ L ) exp [ i π Δ ξ 2 λ z ( K 2 + L 2 ) ] } ) .
Δ x = 0.5 ( λ / sin α ) = ( λ z / N Δ ξ ) ,
α s Δ ξ ( N / λ z ) 1 / 2 ,

Metrics