Abstract

We present a new model in which the drift of photoinduced carriers in the transverse direction of a Bi12SiO20 single-crystal plate is newly taken into account in addition to the drift in the longitudinal direction considered with the previous models. According to the new model, the charge distributions in the crystal plate are calculated by an iterative method and the electric potentials in the device by the boundary element method. The modulation transfer function curve is obtained from the potentials and compared with the experimental one. The calculated result agrees fairly well with the experimental result in the entire region of spatial frequency. It is shown that the transverse drift of carriers in the crystal plate plays an important role in the write-in process of a Pockels readout optical modulator device and under certain operational conditions cannot be disregarded in the calculation of the modulation transfer function curve of the device.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Nisenson, S. Iwasa, “Real time optical processing with Bi12SiO20PROM,” Appl. Opt. 11, 2760–2767 (1972).
    [Crossref] [PubMed]
  2. S. Iwasa, J. Feinleib, “The PROM device in optical processing system,” Opt. Eng. 13, 235–242 (1974).
    [Crossref]
  3. P. Nisenson, R. A. Sprague, “Real-time correlation,” Appl. Opt. 14, 2602–2606 (1975).
    [Crossref] [PubMed]
  4. S. Iwasa, “Optical processing: a near real-time coherent system using two Itek PROM devices,” Appl. Opt. 15, 1418–1424 (1976).
    [Crossref] [PubMed]
  5. B. A. Horwitz, F. J. Corbett, “The PROM-theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).
  6. T. Minemoto, I. Tsuchimoto, S. Imi, “Hybrid pattern recognition using the Fraunhofer diffraction pattern,” Opt. Commun. 15, 221–226 (1984).
    [Crossref]
  7. T. Minemoto, J. Narano, “Hybrid pattern recognition by features extracted from object patterns and Fraunhofer diffraction patterns,” Appl. Opt. 24, 2914–2920 (1985).
    [Crossref] [PubMed]
  8. T. Minemoto, K. Hara, “Hybrid pattern recognition by features extracted from object patterns and Fraunhofer diffraction patterns: development of a more useful method,” Appl. Opt. 25, 4065–4070 (1986).
    [Crossref] [PubMed]
  9. T. Minemoto, K. Okamoto, K. Miyamoto, “Optical parallel logic gate using spatial light modulators with Pockels effect,” Appl. Opt. 24, 2055–2062 (1985).
    [Crossref] [PubMed]
  10. T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using spatial light modulators with Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
    [Crossref] [PubMed]
  11. S. L. Hou, D. S. Oliver, “Pockels readout optical memory using Bi12SiO20,” Appl. Phys. Lett. 18, 325–328 (1971).
    [Crossref]
  12. J. Feinleib, D. S. Oliver, “Reusable optical image storage and processing device,” Appl. Opt. 11, 2752–2759 (1972).
    [Crossref] [PubMed]
  13. P. Vohl, P. Nisenson, D. S. Oliver, “Real-time incoherent-to-coherent optical converter,”IEEE Trans. Electron. Devices ED-20, 1032–1037 (1973).
    [Crossref]
  14. R. A. Sprague, “Effect of bulk carriers on PROM sensitivity,” J. Appl. Phys. 46, 1673–1678 (1975).
    [Crossref]
  15. Y. Owechko, A. R. Tanguay, “Exposure-induced charge transport model of electrooptic spatial light modulator sensitivity,”J. Opt. Soc. Am. 71, 1630 (A) (1981).
  16. A. R. Tanguay, Y. Owechko, “Materials considerations for electrooptic spatial light modulators,”J. Opt. Soc. Am. 72, 1832–1833 (A) (1982).
  17. Y. Owechko, “Effects of charge transport and crystallographic orientation on electrooptic spatial light modulator resolution and sensitivity,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1983).
  18. T. Minemoto, T. Toda, “Effect of electron–hole recombination on the performance of Bi12SiO20optical image converter,” Jpn. J. Appl. Phys. 20, 2373–2387 (1981).
    [Crossref]
  19. Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).
  20. M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
    [Crossref]
  21. Y. Owechko, A. R. Tanguay, “Exposure-induced charge distribution effects on the modulation transfer function (MTF) of electrooptic spatial light modulators,” in Devices and Systems for Optical Signal Processing, T. C. Strand, A. R. Tanguay, eds., Proc. Soc. Photo-Opt. Instrum. Eng.218, 67–80 (1980).
    [Crossref]
  22. Y. Owechko, A. R. Tanguay, “Effects of operating mode on electrooptic spatial light modulator resolution and sensitivity,” Opt. Lett. 7, 587–589 (1982).
    [Crossref] [PubMed]
  23. Y. Owechko, A. R. Tanguay, “Theoretical resolution limitation of electrooptic spatial light modulators. I. Fundamental considerations,” J. Opt. Soc. Am. A 1, 635–643 (1984).
    [Crossref]
  24. Y. Owechko, A. R. Tanguay, “Theoretical resolution limitations of electrooptic spatial light modulators. II. Effects of crystallographic orientation,” J. Opt. Soc. Am. A 1, 644–652 (1984).
    [Crossref]
  25. Y. Owechko, A. R. Tanguay, “Electrooptic spatial light modulators: Effects of operational mode and crystallographic orientation,”J. Opt. Soc. Am. 71, 1630 (A) (1981).
  26. Y. Owechko, A. R. Tanguay, “Effects of charge dynamics and device parameters on the resolution of electrooptic spatial light modulators,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 110–121 (1979).
    [Crossref]
  27. A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).
  28. R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
    [Crossref]
  29. W. F. Gorham, “Parylenes,” Mach. Design 40, 65 (1968).
  30. S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
    [Crossref]
  31. C. A. Brebbia, The Boundary Element Method for Engineers (Pentech, London, 1978).

1986 (2)

1985 (2)

1984 (3)

1982 (2)

Y. Owechko, A. R. Tanguay, “Effects of operating mode on electrooptic spatial light modulator resolution and sensitivity,” Opt. Lett. 7, 587–589 (1982).
[Crossref] [PubMed]

A. R. Tanguay, Y. Owechko, “Materials considerations for electrooptic spatial light modulators,”J. Opt. Soc. Am. 72, 1832–1833 (A) (1982).

1981 (3)

T. Minemoto, T. Toda, “Effect of electron–hole recombination on the performance of Bi12SiO20optical image converter,” Jpn. J. Appl. Phys. 20, 2373–2387 (1981).
[Crossref]

Y. Owechko, A. R. Tanguay, “Exposure-induced charge transport model of electrooptic spatial light modulator sensitivity,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Electrooptic spatial light modulators: Effects of operational mode and crystallographic orientation,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

1979 (1)

A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).

1978 (2)

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

B. A. Horwitz, F. J. Corbett, “The PROM-theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

1977 (1)

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

1976 (1)

1975 (2)

P. Nisenson, R. A. Sprague, “Real-time correlation,” Appl. Opt. 14, 2602–2606 (1975).
[Crossref] [PubMed]

R. A. Sprague, “Effect of bulk carriers on PROM sensitivity,” J. Appl. Phys. 46, 1673–1678 (1975).
[Crossref]

1974 (1)

S. Iwasa, J. Feinleib, “The PROM device in optical processing system,” Opt. Eng. 13, 235–242 (1974).
[Crossref]

1973 (2)

P. Vohl, P. Nisenson, D. S. Oliver, “Real-time incoherent-to-coherent optical converter,”IEEE Trans. Electron. Devices ED-20, 1032–1037 (1973).
[Crossref]

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

1972 (2)

1971 (2)

S. L. Hou, D. S. Oliver, “Pockels readout optical memory using Bi12SiO20,” Appl. Phys. Lett. 18, 325–328 (1971).
[Crossref]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[Crossref]

1968 (1)

W. F. Gorham, “Parylenes,” Mach. Design 40, 65 (1968).

Aldrich, R. E.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[Crossref]

Berezkin, V. I.

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

Brebbia, C. A.

C. A. Brebbia, The Boundary Element Method for Engineers (Pentech, London, 1978).

Corbett, F. J.

B. A. Horwitz, F. J. Corbett, “The PROM-theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

Feinleib, J.

S. Iwasa, J. Feinleib, “The PROM device in optical processing system,” Opt. Eng. 13, 235–242 (1974).
[Crossref]

J. Feinleib, D. S. Oliver, “Reusable optical image storage and processing device,” Appl. Opt. 11, 2752–2759 (1972).
[Crossref] [PubMed]

Gorham, W. F.

W. F. Gorham, “Parylenes,” Mach. Design 40, 65 (1968).

Hara, K.

Harvill, M. L.

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[Crossref]

Horwitz, B. A.

B. A. Horwitz, F. J. Corbett, “The PROM-theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

Hou, S. L.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[Crossref]

S. L. Hou, D. S. Oliver, “Pockels readout optical memory using Bi12SiO20,” Appl. Phys. Lett. 18, 325–328 (1971).
[Crossref]

Imi, S.

T. Minemoto, I. Tsuchimoto, S. Imi, “Hybrid pattern recognition using the Fraunhofer diffraction pattern,” Opt. Commun. 15, 221–226 (1984).
[Crossref]

Iwasa, S.

Khomenko, A. V.

A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

Koyama, J.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Krasin’kova, M. V.

A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

Kuhara, Y.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Lauer, R. B.

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

Minemoto, T.

Miyamoto, K.

Nagai, Y.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Narano, J.

Nisenson, P.

Nishihara, H.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Numata, S.

Okamoto, K.

Oliver, D. S.

P. Vohl, P. Nisenson, D. S. Oliver, “Real-time incoherent-to-coherent optical converter,”IEEE Trans. Electron. Devices ED-20, 1032–1037 (1973).
[Crossref]

J. Feinleib, D. S. Oliver, “Reusable optical image storage and processing device,” Appl. Opt. 11, 2752–2759 (1972).
[Crossref] [PubMed]

S. L. Hou, D. S. Oliver, “Pockels readout optical memory using Bi12SiO20,” Appl. Phys. Lett. 18, 325–328 (1971).
[Crossref]

Owechko, Y.

Y. Owechko, A. R. Tanguay, “Theoretical resolution limitations of electrooptic spatial light modulators. II. Effects of crystallographic orientation,” J. Opt. Soc. Am. A 1, 644–652 (1984).
[Crossref]

Y. Owechko, A. R. Tanguay, “Theoretical resolution limitation of electrooptic spatial light modulators. I. Fundamental considerations,” J. Opt. Soc. Am. A 1, 635–643 (1984).
[Crossref]

Y. Owechko, A. R. Tanguay, “Effects of operating mode on electrooptic spatial light modulator resolution and sensitivity,” Opt. Lett. 7, 587–589 (1982).
[Crossref] [PubMed]

A. R. Tanguay, Y. Owechko, “Materials considerations for electrooptic spatial light modulators,”J. Opt. Soc. Am. 72, 1832–1833 (A) (1982).

Y. Owechko, A. R. Tanguay, “Exposure-induced charge transport model of electrooptic spatial light modulator sensitivity,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Electrooptic spatial light modulators: Effects of operational mode and crystallographic orientation,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Exposure-induced charge distribution effects on the modulation transfer function (MTF) of electrooptic spatial light modulators,” in Devices and Systems for Optical Signal Processing, T. C. Strand, A. R. Tanguay, eds., Proc. Soc. Photo-Opt. Instrum. Eng.218, 67–80 (1980).
[Crossref]

Y. Owechko, “Effects of charge transport and crystallographic orientation on electrooptic spatial light modulator resolution and sensitivity,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1983).

Y. Owechko, A. R. Tanguay, “Effects of charge dynamics and device parameters on the resolution of electrooptic spatial light modulators,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 110–121 (1979).
[Crossref]

Petrov, M. P.

A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

Sprague, R. A.

R. A. Sprague, “Effect of bulk carriers on PROM sensitivity,” J. Appl. Phys. 46, 1673–1678 (1975).
[Crossref]

P. Nisenson, R. A. Sprague, “Real-time correlation,” Appl. Opt. 14, 2602–2606 (1975).
[Crossref] [PubMed]

Tada, K.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Tanguay, A. R.

Y. Owechko, A. R. Tanguay, “Theoretical resolution limitation of electrooptic spatial light modulators. I. Fundamental considerations,” J. Opt. Soc. Am. A 1, 635–643 (1984).
[Crossref]

Y. Owechko, A. R. Tanguay, “Theoretical resolution limitations of electrooptic spatial light modulators. II. Effects of crystallographic orientation,” J. Opt. Soc. Am. A 1, 644–652 (1984).
[Crossref]

Y. Owechko, A. R. Tanguay, “Effects of operating mode on electrooptic spatial light modulator resolution and sensitivity,” Opt. Lett. 7, 587–589 (1982).
[Crossref] [PubMed]

A. R. Tanguay, Y. Owechko, “Materials considerations for electrooptic spatial light modulators,”J. Opt. Soc. Am. 72, 1832–1833 (A) (1982).

Y. Owechko, A. R. Tanguay, “Exposure-induced charge transport model of electrooptic spatial light modulator sensitivity,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Electrooptic spatial light modulators: Effects of operational mode and crystallographic orientation,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Exposure-induced charge distribution effects on the modulation transfer function (MTF) of electrooptic spatial light modulators,” in Devices and Systems for Optical Signal Processing, T. C. Strand, A. R. Tanguay, eds., Proc. Soc. Photo-Opt. Instrum. Eng.218, 67–80 (1980).
[Crossref]

Y. Owechko, A. R. Tanguay, “Effects of charge dynamics and device parameters on the resolution of electrooptic spatial light modulators,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 110–121 (1979).
[Crossref]

Toda, T.

T. Minemoto, T. Toda, “Effect of electron–hole recombination on the performance of Bi12SiO20optical image converter,” Jpn. J. Appl. Phys. 20, 2373–2387 (1981).
[Crossref]

Tsuchimoto, I.

T. Minemoto, I. Tsuchimoto, S. Imi, “Hybrid pattern recognition using the Fraunhofer diffraction pattern,” Opt. Commun. 15, 221–226 (1984).
[Crossref]

Vohl, P.

P. Vohl, P. Nisenson, D. S. Oliver, “Real-time incoherent-to-coherent optical converter,”IEEE Trans. Electron. Devices ED-20, 1032–1037 (1973).
[Crossref]

Yamaguchi, G.

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Appl. Opt. (8)

Appl. Phys. Lett. (1)

S. L. Hou, D. S. Oliver, “Pockels readout optical memory using Bi12SiO20,” Appl. Phys. Lett. 18, 325–328 (1971).
[Crossref]

Ferroelectrics (1)

M. P. Petrov, A. V. Khomenko, V. I. Berezkin, M. V. Krasin’kova, “Optical information recording in Bi12SiO20,” Ferroelectrics 22, 651–652 (1978).
[Crossref]

IEEE Trans. Electron. Devices (1)

P. Vohl, P. Nisenson, D. S. Oliver, “Real-time incoherent-to-coherent optical converter,”IEEE Trans. Electron. Devices ED-20, 1032–1037 (1973).
[Crossref]

J. Appl. Phys. (3)

R. A. Sprague, “Effect of bulk carriers on PROM sensitivity,” J. Appl. Phys. 46, 1673–1678 (1975).
[Crossref]

R. E. Aldrich, S. L. Hou, M. L. Harvill, “Electrical and optical properties of Bi12SiO20,” J. Appl. Phys. 42, 493–494 (1971).
[Crossref]

S. L. Hou, R. B. Lauer, R. E. Aldrich, “Transport processes of photoinduced carriers in Bi12SiO20,” J. Appl. Phys. 44, 2652–2658 (1973).
[Crossref]

J. Opt. Soc. Am. (3)

Y. Owechko, A. R. Tanguay, “Electrooptic spatial light modulators: Effects of operational mode and crystallographic orientation,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

Y. Owechko, A. R. Tanguay, “Exposure-induced charge transport model of electrooptic spatial light modulator sensitivity,”J. Opt. Soc. Am. 71, 1630 (A) (1981).

A. R. Tanguay, Y. Owechko, “Materials considerations for electrooptic spatial light modulators,”J. Opt. Soc. Am. 72, 1832–1833 (A) (1982).

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

T. Minemoto, T. Toda, “Effect of electron–hole recombination on the performance of Bi12SiO20optical image converter,” Jpn. J. Appl. Phys. 20, 2373–2387 (1981).
[Crossref]

Mach. Design (1)

W. F. Gorham, “Parylenes,” Mach. Design 40, 65 (1968).

Opt. Commun. (1)

T. Minemoto, I. Tsuchimoto, S. Imi, “Hybrid pattern recognition using the Fraunhofer diffraction pattern,” Opt. Commun. 15, 221–226 (1984).
[Crossref]

Opt. Eng. (2)

B. A. Horwitz, F. J. Corbett, “The PROM-theory and applications for the Pockels readout optical modulator,” Opt. Eng. 17, 353–364 (1978).

S. Iwasa, J. Feinleib, “The PROM device in optical processing system,” Opt. Eng. 13, 235–242 (1974).
[Crossref]

Opt. Lett. (1)

Sov. Tech. Phys. Lett. (1)

A. V. Khomenko, M. P. Petrov, M. V. Krasin’kova, “Diffraction efficiency of a Pockels readout optical modulator,” Sov. Tech. Phys. Lett. 5, 133–134 (1979).

Tech. Res. Rep. IECEJ (1)

Y. Nagai, H. Nishihara, J. Koyama, K. Tada, Y. Kuhara, G. Yamaguchi, “Characteristics of BSO-PROM for ITC image converter,” Tech. Res. Rep. IECEJ 77, 43–52 (1977).

Other (4)

Y. Owechko, A. R. Tanguay, “Exposure-induced charge distribution effects on the modulation transfer function (MTF) of electrooptic spatial light modulators,” in Devices and Systems for Optical Signal Processing, T. C. Strand, A. R. Tanguay, eds., Proc. Soc. Photo-Opt. Instrum. Eng.218, 67–80 (1980).
[Crossref]

Y. Owechko, “Effects of charge transport and crystallographic orientation on electrooptic spatial light modulator resolution and sensitivity,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1983).

C. A. Brebbia, The Boundary Element Method for Engineers (Pentech, London, 1978).

Y. Owechko, A. R. Tanguay, “Effects of charge dynamics and device parameters on the resolution of electrooptic spatial light modulators,” in Active Optical Devices, J. Tracy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.202, 110–121 (1979).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Typical structure of a PROM device: V′, applied voltage; d, thickness of the BSO crystal plate; l, thickness of the dielectric layer; and ′, dielectric constants.

Fig. 2
Fig. 2

Charge distributions in a BSO crystal plate, calculated by the previous models18,21 and the same material constants as those used in Section 4, at low exposure levels [(1) γ = 0.74, (2) γ = 0.55, (3) γ = 1/e]. The open circles represent the surface charge densities at z = 300 μm.

Fig. 3
Fig. 3

Typical charge distributions: (a) Model I, (b) Model II, (c) Model III, (d) Model IV, and (e) Model V.

Fig. 4
Fig. 4

MTF curves obtained from the method of Owechko and Tanguay21 and the charge distributions shown in Fig. 2, at low exposure levels [(1) γ = 0.74, (2) γ = 0.55, (3) γ = 1/e].

Fig. 5
Fig. 5

Modeling diagram for the PROM device shown in Fig. 1 for calculating the MTF by the new method, where λs is the period of the write-in light in light intensity with a sinusoidal distribution.

Fig. 6
Fig. 6

Schematic model of the movement of electrons in a BSO crystal plate.

Fig. 7
Fig. 7

Variations of charge distributions in the transverse direction in BSO crystal plates for (a) a device with d = 300 μm and (b) a device with d = 100 μm, when λs = 100 μm. The solid curves show those in three planes placed at z ≑ 0, z = d/2, and zd. The dashed curves show surface charge distributions at z = d.

Fig. 8
Fig. 8

Variations of charge distributions in the longitudinal direction in BSO crystal plates for (a) a device with d = 300 μm and (b) a device with d = 100 μm, λs = 100 μm, and voltage drop V when its value becomes maximum (V = Vmax), minimum (V = Vmin), and intermediate [V = V ¯ = (Vmax + Vmin)/2]. The open circles show the surface charge densities at z = d.

Fig. 9
Fig. 9

Variations, versus x and spatial frequency f, of voltage drop V across BSO crystal plates for (a) a device with d = 300 μm and (b) a device with d = 100 μm. The vertical axes are normalized by the mean value V ¯ of the voltage drop for each spatial frequency.

Fig. 10
Fig. 10

The calculated results of MTF curves for a device with (a) d = 300 μm and (b) d = 100 μm. The solid curves are MTF curves obtained from the new model, and the dashed curves show those from the previous models18,12 (such as the continuous-line charge densities shown in Fig. 2).

Fig. 11
Fig. 11

Theoretical and experimental MTF curves. The solid curves show the theoretical results obtained from the new model described in this paper [exposures are (1) 0.2 and (2) 0.25 erg/cm2 at λ = 435 nm]. The dashed curve shows the theoretical result obtained from the previous models.18,21 The long-and-short-dashed curves show values measured by Khomenko et al.27 [(4) exposure = 50 ergs/cm2 at d = 600 μm and λ = 442 nm] and the Itek Group5 [(5) exposure = 300 ergs/cm2 at d = 800 μm and λ = 488 nm).

Fig. 12
Fig. 12

Definitions of two types of boundary, Γ1 and Γ2, which are divided into a number of small elements by the boundary element method.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

ρ ( x , z ) = ρ ( z ) [ 1 + cos ( 2 π f x ) ] / 2 ,
{ ρ ( z ) = ρ 0 exp ( - z / ξ ) ( 0 < z < d ) ρ ( z ) = - ρ 0 ξ [ exp ( - d / ξ ) - 1 ] ( z = d ) ;
{ ρ ( z ) = ρ 0 ( 0 < z < r 1 ) ρ ( z ) = 0 ( r 1 < z < d ) ρ ( z ) = - ρ 0 r 1 ( z = d ) ;
{ ρ ( z ) = ρ 0 exp ( - z / ξ ) - ρ 0 × exp [ - 4 ( z - z 0 ) / r 0 2 ] ( 0 < z < d ) ρ ( z ) = 0 ( z = 0 , z = d ) ,
{ ρ ( z ) = ρ 0 exp ( - z / ξ ) [ 0 < z < ξ d / ( ξ + η ) ] ρ ( z ) = - ξ ρ 0 η exp [ - ( d - z ) / η ] [ ξ d / ( ξ + η ) < z < d ] ;
{ ρ ( z ) = ρ 0 ( 0 < z < r 1 ) ρ ( z ) = 0 ( r 1 < z < d - r 2 ) ρ ( z ) = r 1 ρ 0 / r 2 ( d - r 2 < z < d ) ;
V ( x , f ) = V ( 0 ) + V ( f ) cos ( 2 π f x ) ,
MTF = sin 2 ( π 2 V max V h ) - sin 2 ( π 2 V min V h ) sin 2 ( π 2 V max V h ) + sin 2 ( π 2 V min V h ) ,
V max = V ( 0 ) + V ( f ) ,
V min = V ( 0 ) - V ( f ) ,
I = I 0 cos 2 ( π f x ) = I 0 [ 1 + cos ( 2 π f x ) ] / 2 ,
Δ n ( x , z ) = α β h ν I ( x ) Δ t exp ( - α z ) ,
Δ N - k , j + 1 = c k , j + 1 a [ a b α β h ν I ( x i ) Δ t exp ( - α z j ) + N r ] × [ 1 - exp ( - Δ S i , j μ τ E ( x i , z j ) ) ] ,
Δ N - k + 1 , j + 1 = c k + 1 , j + 1 a [ a b α β h ν I ( x i ) Δ t exp ( - α z j ) + N r ] × [ 1 - exp ( - Δ S i , j μ τ E ( x i , z j ) ) ] ,
Δ N + ( x i , z j ) = a b α β h ν I ( x i ) Δ t exp ( - α z j ) .
ρ ( x i , z j ) = e [ N + ( x i , z j ) - N - ( x i , z j ) ] ,
σ ( x i , d ) = - e N s ( x i , d ) ,
2 U B = - ρ ( x , z ) / ,
2 U D = 0.
V ( x i , f ) = U B ( x i , d ) - U B ( x i , 0 ) .
2 u = p ,
u * = 1 2 π ln ( 1 / r )
Ω p u * d Ω + u i + Γ 2 u q * d Γ + Γ 1 u ¯ q * d Γ = Γ 2 q ¯ u * d Γ + Γ 1 q u * d Γ ,
1 2 u i + Ω p u * d Ω + Γ u q * d Γ = Γ q u * d Γ .
1 2 u i + Ω p u * d Ω + j = 1 J u j Γ j q * d Γ = j = 1 J q j Γ j u * d Γ .
H ^ i j = Γ j q * d Γ ,             B i = Ω p u * d Ω ,
G i j = Γ j u * d Γ .
1 2 u i + B i + j = 1 J u j H ^ i j = j = 1 J q j G i j .
H i j = H ^ i j ,
H i j = H ^ j j + 1 / 2.
B i + j = 1 J H i j u j = j = 1 J G i j q j .
B + HU = GQ .
A X = F ,
u i = j = 1 J G i j q j - j = 1 J H i j u j - B i .
u 12 1 = u 12 2 = u 12             ( compatibility ) , q 12 1 = - ( / ) q 12 2 = q 12             ( equilibrium ) on Γ 12 ,
u 23 2 = u 23 3 = u 23             ( compatibility ) , q 23 3 = σ - q 23 3 = q 23             ( equilibrium ) on Γ 23 .
[ H 1 H 12 1 - G 12 1 0 0 0 0 0 H 12 2 / G 12 2 H 2 H 23 2 - G 23 2 0 0 0 0 0 H 23 3 ( G 23 3 - σ ) / H 3 ] × [ U 1 U 12 Q 12 U 2 U 23 Q 23 U 3 ] = [ G 1 0 0 0 G 2 0 0 0 G 3 ] [ Q 1 Q 2 Q 3 ] - [ 0 B 0 ] .
U B i = j = 1 2 ( L + M ) q j G i j - j = 1 2 ( L + M ) u j H ^ i j - B i ,

Metrics