Abstract

The Huygens–Fresnel diffraction integral has been formulated for incident spherical waves with use of the Kirchhoff obliquity factor and the wave front as the surface of integration instead of the aperture plane. Accurate numerical integration calculations were used to investigate very-near-field (a few aperture diameters or less) diffraction for the well-established case of a circular aperture. It is shown that the classical aperture-plane formulation degenerates when the wave front, as truncated at the aperture, has any degree of curvature to it, whereas the wave-front formulation produces accurate results from ∞ up to one aperture diameter behind the aperture plane. It is also shown that the Huygens–Fresnel–Kirchhoff incident-plane-wave-aperture-plane-integration and incident-spherical-wave-wave-front-integration formulations produce equally accurate results for apertures with exit f-numbers as small as 1.

© 1989 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription