Abstract

For light propagation in stratified media the normal component of the Poynting vector is defined as an indefinite scalar product. The vanishing of this scalar product for two waves is regarded as proof of their mutual orthogonality. Orthogonality in this sense is an inherent property of optical eigenmodes with different real wave vectors. It is shown that the matrices D and P appearing in Berreman’s 4 × 4 matrix formalism are Hermitian and unitary, respectively, within this metric. By using the orthogonality property of optical eigenmodes, projection operators and a transformation matrix are constructed that can facilitate numerical calculations and analytical treatments. The equivalence of Berreman’s 4 × 4 matrix method with scattering matrix and transfer matrix formalisms is shown.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription