Abstract

Different channels in the visual system mediate the detection of flicker and the detection of high spatial frequencies. The magnocellular channel is optimized for flicker detection, whereas the parvocellular channel is optimized for color vision and spatial resolution. The spectral sensitivity of the magnocellular (flicker) channel is obtained by combining cone inputs in the ratio R/G = 5/3; the spectral sensitivity of the parvocellular channel is obtained with the ratio R/G = 2/3. However, when the parvocellular channel is used for resolution, the sensitivity changes from R/G = 2/3 to R/G = 5/3. By hypothesis, this occurs because only parvocellular centers resolve high spatial frequencies and because parvocellular centers are distributed in the same ratio as cones feeding magnocellular cells.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. We use the terms parvocellular and magnocellular in the manner of E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. 330, 125–143 (1982). The primate magnocellular channel contains two populations of cells, both X and Y, apparently homologous with the X and Y cells of the cat. The parvocellular channel, although X-like, is a nonhomologous primate specialization, dominating the central fovea, composed of mostly type I simple-opponent units.
    [PubMed]
  2. For example, see P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,”J. Neurophysiol. 41, 788–797 (1978).
    [PubMed]
  3. B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
    [PubMed]
  4. A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 219–240 (1984).
  5. T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).
  6. F. M. De Monasterio, “Functional properties and presumed roles of retinal ganglion cells of the monkey,” presented at 28th International Congress on Physiological Sciences, Budapest1980, in Regulatory Functions of the CNS Subsystems, J. Szentagothai, J. Hamori, M. Palkovits, eds., Vol. 2 of Advances in Physiological Sciences (Akademiai Kiado/Pergamon, Budapest, 1981).
  7. M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,”J. Neurosci. 7, 3416–3468 (1987).
    [PubMed]
  8. V. C. Smith, J. Pokorny, “Smith and Pokorny (1975) cone sensitivity functions,” in Human Color Vision, R. M. Boynton, ed. (Holt, Rinehart, New York, 1979), App., Part III.
  9. C. Cicerone, J. L. Nerger, “The ratio of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Invest. Ophthalmol. Vis. Sei. Suppl. 26, 11 (1985); H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectro-photometry of human photoreceptors,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80; P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [CrossRef] [PubMed]
  10. C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent fields are asymmetrical: G-cone centers predominate,”J. Opt. Soc. Am 73, 1527–1532 (1983).
    [CrossRef] [PubMed]
  11. R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
    [PubMed]
  12. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-cell channel,” Vision Res. 23, 1495–1500 (1983); C. R. Ingling, E. Martinez-Uriegas, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
    [CrossRef]
  13. C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
    [CrossRef]
  14. R. L. De Valois, P. Pease, “Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures,” Science 171, 694–696 (1971).
    [CrossRef] [PubMed]
  15. J. Pokorny, C. H. Graham, R. N. Lanson, “Effect of wavelength on foveal grating acuity,”J. Opt. Soc. Am. 58, 1410–1414 (1968).
    [CrossRef] [PubMed]
  16. M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
    [CrossRef] [PubMed]
  17. C. A. Burbeck, D. H. Kelly, “Spatiotemporal characteristics of visual mechanisms: excitatory-inhibitory model,”J. Opt. Soc. Am. 70, 1121–1126 (1980).
    [CrossRef] [PubMed]
  18. H. E. Ives, “XII. Studies in the photometry of lights of different colors. Spectral luminosity curves obtained by the equality of brightness photometer and the flicker photometer under similar conditions,” Philos. Mag. 24, 149–188 (1912).
  19. H. L. De Vries, “The luminosity curve of the eye as determined by measurements with the flickerphotometer,” Physica 14, 319–348 (1948).
    [CrossRef]
  20. F. M. De Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
    [PubMed]
  21. D. T. Lindsey, J. Pokorny, V. C. Smith, “Phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 3, 921–927 (1986).
    [CrossRef] [PubMed]
  22. P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
    [CrossRef] [PubMed]
  23. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,”J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef] [PubMed]

1987 (1)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

1986 (1)

1985 (2)

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. Cicerone, J. L. Nerger, “The ratio of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Invest. Ophthalmol. Vis. Sei. Suppl. 26, 11 (1985); H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectro-photometry of human photoreceptors,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80; P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

1984 (2)

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 219–240 (1984).

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

1983 (3)

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-cell channel,” Vision Res. 23, 1495–1500 (1983); C. R. Ingling, E. Martinez-Uriegas, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
[CrossRef]

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent fields are asymmetrical: G-cone centers predominate,”J. Opt. Soc. Am 73, 1527–1532 (1983).
[CrossRef] [PubMed]

1982 (1)

We use the terms parvocellular and magnocellular in the manner of E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. 330, 125–143 (1982). The primate magnocellular channel contains two populations of cells, both X and Y, apparently homologous with the X and Y cells of the cat. The parvocellular channel, although X-like, is a nonhomologous primate specialization, dominating the central fovea, composed of mostly type I simple-opponent units.
[PubMed]

1980 (1)

1979 (1)

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[CrossRef] [PubMed]

1978 (1)

For example, see P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,”J. Neurophysiol. 41, 788–797 (1978).
[PubMed]

1977 (1)

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

1976 (1)

B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
[PubMed]

1975 (1)

F. M. De Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

1971 (1)

R. L. De Valois, P. Pease, “Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures,” Science 171, 694–696 (1971).
[CrossRef] [PubMed]

1968 (1)

1966 (1)

1948 (1)

H. L. De Vries, “The luminosity curve of the eye as determined by measurements with the flickerphotometer,” Physica 14, 319–348 (1948).
[CrossRef]

1912 (1)

H. E. Ives, “XII. Studies in the photometry of lights of different colors. Spectral luminosity curves obtained by the equality of brightness photometer and the flicker photometer under similar conditions,” Philos. Mag. 24, 149–188 (1912).

Abramov, I.

Burbeck, C. A.

Cicerone, C.

C. Cicerone, J. L. Nerger, “The ratio of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Invest. Ophthalmol. Vis. Sei. Suppl. 26, 11 (1985); H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectro-photometry of human photoreceptors,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80; P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

De Monasterio, F. M.

F. M. De Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

F. M. De Monasterio, “Functional properties and presumed roles of retinal ganglion cells of the monkey,” presented at 28th International Congress on Physiological Sciences, Budapest1980, in Regulatory Functions of the CNS Subsystems, J. Szentagothai, J. Hamori, M. Palkovits, eds., Vol. 2 of Advances in Physiological Sciences (Akademiai Kiado/Pergamon, Budapest, 1981).

De Valois, R. L.

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

R. L. De Valois, P. Pease, “Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures,” Science 171, 694–696 (1971).
[CrossRef] [PubMed]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,”J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

De Vries, H. L.

H. L. De Vries, “The luminosity curve of the eye as determined by measurements with the flickerphotometer,” Physica 14, 319–348 (1948).
[CrossRef]

Derrington, A. M.

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 219–240 (1984).

Dreher, B.

B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
[PubMed]

Finkelstein, M. A.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

Fukada, Y.

B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
[PubMed]

Gouras, P.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[CrossRef] [PubMed]

F. M. De Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

Graham, C. H.

Hepler, N. K.

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

Hicks, T. P.

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).

Hood, D. C.

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

Hubel, D. H.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-cell channel,” Vision Res. 23, 1495–1500 (1983); C. R. Ingling, E. Martinez-Uriegas, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent fields are asymmetrical: G-cone centers predominate,”J. Opt. Soc. Am 73, 1527–1532 (1983).
[CrossRef] [PubMed]

Ives, H. E.

H. E. Ives, “XII. Studies in the photometry of lights of different colors. Spectral luminosity curves obtained by the equality of brightness photometer and the flicker photometer under similar conditions,” Philos. Mag. 24, 149–188 (1912).

Jacobs, G. H.

Kaplan, E.

We use the terms parvocellular and magnocellular in the manner of E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. 330, 125–143 (1982). The primate magnocellular channel contains two populations of cells, both X and Y, apparently homologous with the X and Y cells of the cat. The parvocellular channel, although X-like, is a nonhomologous primate specialization, dominating the central fovea, composed of mostly type I simple-opponent units.
[PubMed]

Kelly, D. H.

Lanson, R. N.

Lee, B. B.

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).

Lennie, P.

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 219–240 (1984).

Lindsey, D. T.

Livingstone, M. S.

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

Malpeli, J. G.

For example, see P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,”J. Neurophysiol. 41, 788–797 (1978).
[PubMed]

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-cell channel,” Vision Res. 23, 1495–1500 (1983); C. R. Ingling, E. Martinez-Uriegas, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent fields are asymmetrical: G-cone centers predominate,”J. Opt. Soc. Am 73, 1527–1532 (1983).
[CrossRef] [PubMed]

Nerger, J. L.

C. Cicerone, J. L. Nerger, “The ratio of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Invest. Ophthalmol. Vis. Sei. Suppl. 26, 11 (1985); H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectro-photometry of human photoreceptors,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80; P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

Pease, P.

R. L. De Valois, P. Pease, “Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures,” Science 171, 694–696 (1971).
[CrossRef] [PubMed]

Pokorny, J.

Rodieck, R. W.

B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
[PubMed]

Schiller, P. H.

For example, see P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,”J. Neurophysiol. 41, 788–797 (1978).
[PubMed]

Shapley, R. M.

We use the terms parvocellular and magnocellular in the manner of E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. 330, 125–143 (1982). The primate magnocellular channel contains two populations of cells, both X and Y, apparently homologous with the X and Y cells of the cat. The parvocellular channel, although X-like, is a nonhomologous primate specialization, dominating the central fovea, composed of mostly type I simple-opponent units.
[PubMed]

Smith, V. C.

D. T. Lindsey, J. Pokorny, V. C. Smith, “Phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 3, 921–927 (1986).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Smith and Pokorny (1975) cone sensitivity functions,” in Human Color Vision, R. M. Boynton, ed. (Holt, Rinehart, New York, 1979), App., Part III.

Snodderly, D. M.

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

Vidyasagar, T. R.

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).

Yund, E. W.

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

Zrenner, E.

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sei. Suppl. (1)

C. Cicerone, J. L. Nerger, “The ratio of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea,” Invest. Ophthalmol. Vis. Sei. Suppl. 26, 11 (1985); H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectro-photometry of human photoreceptors,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 69–80; P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

For example, see P. H. Schiller, J. G. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,”J. Neurophysiol. 41, 788–797 (1978).
[PubMed]

J. Neurosci. (1)

M. S. Livingstone, D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement and depth,”J. Neurosci. 7, 3416–3468 (1987).
[PubMed]

J. Opt. Soc. Am (1)

C. R. Ingling, E. Martinez-Uriegas, “Simple-opponent fields are asymmetrical: G-cone centers predominate,”J. Opt. Soc. Am 73, 1527–1532 (1983).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Physiol. (3)

F. M. De Monasterio, P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

We use the terms parvocellular and magnocellular in the manner of E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. 330, 125–143 (1982). The primate magnocellular channel contains two populations of cells, both X and Y, apparently homologous with the X and Y cells of the cat. The parvocellular channel, although X-like, is a nonhomologous primate specialization, dominating the central fovea, composed of mostly type I simple-opponent units.
[PubMed]

B. Dreher, Y. Fukada, R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,”J. Physiol. 258, 433–452 (1976).
[PubMed]

J. Physiol. (London) (2)

A. M. Derrington, P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 219–240 (1984).

T. P. Hicks, B. B. Lee, T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,”J. Physiol. (London) 337, 183–200 (1983).

Philos. Mag. (1)

H. E. Ives, “XII. Studies in the photometry of lights of different colors. Spectral luminosity curves obtained by the equality of brightness photometer and the flicker photometer under similar conditions,” Philos. Mag. 24, 149–188 (1912).

Physica (1)

H. L. De Vries, “The luminosity curve of the eye as determined by measurements with the flickerphotometer,” Physica 14, 319–348 (1948).
[CrossRef]

Science (2)

R. L. De Valois, P. Pease, “Contours and contrast: responses of monkey lateral geniculate nucleus cells to luminance and color figures,” Science 171, 694–696 (1971).
[CrossRef] [PubMed]

P. Gouras, E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979).
[CrossRef] [PubMed]

Sensory Processes (1)

R. L. De Valois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Processes 1, 244–259 (1977).
[PubMed]

Vision Res. (3)

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-cell channel,” Vision Res. 23, 1495–1500 (1983); C. R. Ingling, E. Martinez-Uriegas, “The spatiochromatic signal of the r–g channel,” in Colour Vision, J. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 433–444.
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

M. A. Finkelstein, D. C. Hood, “Detection and discrimination of small, brief lights: variable tuning of opponent channels,” Vision Res. 24, 175–181 (1984).
[CrossRef] [PubMed]

Other (2)

V. C. Smith, J. Pokorny, “Smith and Pokorny (1975) cone sensitivity functions,” in Human Color Vision, R. M. Boynton, ed. (Holt, Rinehart, New York, 1979), App., Part III.

F. M. De Monasterio, “Functional properties and presumed roles of retinal ganglion cells of the monkey,” presented at 28th International Congress on Physiological Sciences, Budapest1980, in Regulatory Functions of the CNS Subsystems, J. Szentagothai, J. Hamori, M. Palkovits, eds., Vol. 2 of Advances in Physiological Sciences (Akademiai Kiado/Pergamon, Budapest, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Theoretical response curves of the excitatory, or center (—), and inhibitory, or surround (- - - -), mechanisms (taken from Ref. 17). The center is more sensitive and has a higher cutoff frequency than the surround, and at contrast threshold the center mediates the detection of high spatial frequencies; thus acuity tasks functionally strip away receptive-field surrounds, cpd, cycles per degree.

Metrics