Abstract

Spatial-frequency tuning at two different spatial frequencies was determined by measuring the detectability of a signal grating that was made difficult to see by low- or high-pass visual noise. The signals were vertical sinusoidal gratings of different spatial frequencies. The detectability of the signal was measured in two-alternative forced-choice tasks with different temporal envelopes: (1) a slowly changing raised-cosine (Hanning) window, (2) a rectangularly gated 2-Hz counterphase flickering envelope, and (3) a rectangularly gated 10-Hz counterphase flickering envelope. Additional measurements were made using drifting stimuli with the signal and noise drifting in the same or in opposite directions. The temporal envelopes were chosen because they have different effects on the contrast-sensitivity function and it was desired to know how temporal factors affect the spatial-frequency tuning of the relatively narrowly tuned channels thought to underlie contrast sensitivity. The results show that, for counterphase flickering stimuli, spatial-frequency tuning does not depend on temporal envelopes applied identically to the signal and to the masking noise. A similar picture emerges at slow (2.7-deg/sec) but not at fast (10.9-deg/sec) drift rates.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,”J. Opt. Soc. Am. 56, 1141–1142 (1966).
    [CrossRef]
  2. D. H. Kelly, “Flickering patterns and lateral inhibition,”J. Opt. Soc. Am. 59, 1361–1370 (1969).
    [CrossRef]
  3. F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–556 (1968).
  4. G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
    [CrossRef] [PubMed]
  5. J. Nachmias, B. E. Rogowitz, “Masking by spatially-modulated gratings,” Vision Res. 23, 1621–1629 (1983).
    [CrossRef] [PubMed]
  6. D. G. Albrecht, R. L. DeValois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,”J. Physiol. (London) 319, 497–514 (1981).
  7. A. M. Derrington, “Distortion products in geniculate X-cells: a physiological basis for masking by spatially modulated gratings?” Vision Res. 27, 1377–1386 (1987).
    [CrossRef]
  8. U. Greis, R. Roehler, “Untersuchung der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung,” Opt. Acta 17, 515–526 (1970).
    [CrossRef]
  9. C. F. Stromeyer, B. Julesz, “Spatial frequency masking in vision: critical bands and the spread of masking,”J. Opt. Soc. Am. 62, 1221–1232 (1972).
    [CrossRef] [PubMed]
  10. G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments. I. Noise masks,”J. Opt. Soc. Am. 71, 574–581 (1981).
    [CrossRef] [PubMed]
  11. O. H. Schade, “Optical and photoelectric analog of the eye,”J. Opt. Soc. Am. 46, 721–739 (1956).
    [CrossRef]
  12. L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Engelwood Cliffs, N.J., 1975).
  13. J. A. Movshon, Department of Psychology, York University, York, UK (personal communication, 1987).
  14. O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
    [CrossRef]
  15. For observer PS, psychometric functions are based on 50 observations per point.
  16. D. H. Kelly, “Motion and vision. I. Stabilized images of stationary gratings,”J. Opt. Soc. Am. 69, 1266–1274 (1979).
    [CrossRef]
  17. D. H. Kelly, “Motion and vision. II. Stabilized spatiotemporal surface,”J. Opt. Soc. Am. 69, 1340–1349 (1979).
    [CrossRef] [PubMed]
  18. C. Blakemore, F. W. Campbell, “Adaptation to spatial stimuli,”J. Physiol. (London) 200, 11–13 (1969).
  19. N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a test of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
    [CrossRef] [PubMed]
  20. B. E. Carter, G. B. Henning, “The detection of gratings in narrow-band visual noise,”J. Physiol. (London) 219, 355–365 (1971).
  21. H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
    [CrossRef] [PubMed]
  22. J. R. Bergen, H. R. Wilson, J. D. Cowan, “Further evidence for the four mechanisms mediating vision at threshold: sensitivities to complex gratings and periodic patterns,”J. Opt. Soc. Am. 69, 1580–1587 (1979).
    [CrossRef] [PubMed]
  23. R. D. Patterson, “Auditory filter shape,”J. Acoust. Soc. Am. 55, 802–809 (1974).
    [CrossRef] [PubMed]
  24. R. D. Patterson, G. B. Henning, “Stimulus variability and auditory filter shape,”J. Acoust. Soc. Am. 62, 649–664 (1977).
    [CrossRef] [PubMed]
  25. C. R. Carlson, R. W. Klopfenstein, “Spatial-frequency model for hyperacuity,” J. Opt. Soc. Am. A 2, 1747–1751 (1985).
    [CrossRef]
  26. H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
    [CrossRef] [PubMed]
  27. V. P. Ferrara, H. R. Wilson, “Direction specific masking and the analysis of motion in two dimensions,” Vision Res. 27, 1783–1796 (1987).
    [CrossRef]
  28. G. B. Henning, E. Zwicker, “The four factors leading to binaural masking-level differences,” Hearing Res. 19, 29–47 (1985).
    [CrossRef]
  29. G. B. Henning, “Binocular masking and limits on the range of disparity processing,” J. Opt. Soc. Am. A 3(13), P12 (1986).
  30. D. R. Badcock, “Some aspects of spatial phase coding in man,” D. Phil. thesis (Oxford University, Oxford, 1983).
  31. D. R. Badcock, “Spatial phase or local contrast discriminations?” Perception 13, Suppl.A3–A4 (1984).
  32. A. M. Derrington, G. B. Henning, “Errors in direction-of-motion discrimination with complex stimuli,” Vision Res. 27, 61–75 (1987).
    [CrossRef] [PubMed]
  33. G. B. Henning, A. M. Derrington, “Direction-of-motion discrimination with complex patterns: further observations,” submitted to J. Opt. Soc. Am. A.
    [PubMed]
  34. Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).
  35. C. Burbeck, “Criterion-free pattern and flicker thresholds,”J. Opt. Soc. Am. 71, 1343–1350 (1981).
    [PubMed]
  36. A. M. Derrington, G. B. Henning, “Pattern discrimination with flickering stimuli,” Vision Res. 21, 597–602 (1981).
    [CrossRef] [PubMed]
  37. S. R. Lehky, “Temporal properties of visual channels measured by masking,” J. Opt. Soc. Am. A 2, 1260–1272 (1985).
    [CrossRef] [PubMed]
  38. A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
    [CrossRef] [PubMed]
  39. H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 17, 19–32 (1979).
    [CrossRef]
  40. J. P. H. van Santen, G. Sperling, “Elaborated Reichardt detectors,” J. Opt. Soc. Am. A 2, 300–321 (1985).
    [CrossRef] [PubMed]
  41. E. H. Adelson, J. R. Bergen, “Spatio-temporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985).
    [CrossRef] [PubMed]
  42. A. B. Watson, A. Ahumada, “Model of human visual motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
    [CrossRef] [PubMed]

1987 (3)

A. M. Derrington, “Distortion products in geniculate X-cells: a physiological basis for masking by spatially modulated gratings?” Vision Res. 27, 1377–1386 (1987).
[CrossRef]

V. P. Ferrara, H. R. Wilson, “Direction specific masking and the analysis of motion in two dimensions,” Vision Res. 27, 1783–1796 (1987).
[CrossRef]

A. M. Derrington, G. B. Henning, “Errors in direction-of-motion discrimination with complex stimuli,” Vision Res. 27, 61–75 (1987).
[CrossRef] [PubMed]

1986 (1)

G. B. Henning, “Binocular masking and limits on the range of disparity processing,” J. Opt. Soc. Am. A 3(13), P12 (1986).

1985 (6)

1984 (1)

D. R. Badcock, “Spatial phase or local contrast discriminations?” Perception 13, Suppl.A3–A4 (1984).

1983 (2)

H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

J. Nachmias, B. E. Rogowitz, “Masking by spatially-modulated gratings,” Vision Res. 23, 1621–1629 (1983).
[CrossRef] [PubMed]

1982 (1)

Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).

1981 (4)

C. Burbeck, “Criterion-free pattern and flicker thresholds,”J. Opt. Soc. Am. 71, 1343–1350 (1981).
[PubMed]

A. M. Derrington, G. B. Henning, “Pattern discrimination with flickering stimuli,” Vision Res. 21, 597–602 (1981).
[CrossRef] [PubMed]

D. G. Albrecht, R. L. DeValois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,”J. Physiol. (London) 319, 497–514 (1981).

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments. I. Noise masks,”J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

1980 (1)

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

1979 (5)

1977 (1)

R. D. Patterson, G. B. Henning, “Stimulus variability and auditory filter shape,”J. Acoust. Soc. Am. 62, 649–664 (1977).
[CrossRef] [PubMed]

1976 (1)

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

1975 (1)

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[CrossRef] [PubMed]

1974 (1)

R. D. Patterson, “Auditory filter shape,”J. Acoust. Soc. Am. 55, 802–809 (1974).
[CrossRef] [PubMed]

1972 (1)

1971 (2)

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a test of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

B. E. Carter, G. B. Henning, “The detection of gratings in narrow-band visual noise,”J. Physiol. (London) 219, 355–365 (1971).

1970 (1)

U. Greis, R. Roehler, “Untersuchung der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung,” Opt. Acta 17, 515–526 (1970).
[CrossRef]

1969 (2)

D. H. Kelly, “Flickering patterns and lateral inhibition,”J. Opt. Soc. Am. 59, 1361–1370 (1969).
[CrossRef]

C. Blakemore, F. W. Campbell, “Adaptation to spatial stimuli,”J. Physiol. (London) 200, 11–13 (1969).

1968 (1)

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–556 (1968).

1966 (1)

1956 (1)

Adelson, E. H.

Ahumada, A.

Albrecht, D. G.

D. G. Albrecht, R. L. DeValois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,”J. Physiol. (London) 319, 497–514 (1981).

Badcock, D. R.

D. R. Badcock, “Spatial phase or local contrast discriminations?” Perception 13, Suppl.A3–A4 (1984).

D. R. Badcock, “Some aspects of spatial phase coding in man,” D. Phil. thesis (Oxford University, Oxford, 1983).

Bergen, J. R.

Blakemore, C.

C. Blakemore, F. W. Campbell, “Adaptation to spatial stimuli,”J. Physiol. (London) 200, 11–13 (1969).

Broadbent, D. E.

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[CrossRef] [PubMed]

Burbeck, C.

Campbell, F. W.

C. Blakemore, F. W. Campbell, “Adaptation to spatial stimuli,”J. Physiol. (London) 200, 11–13 (1969).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–556 (1968).

Carlson, C. R.

Carter, B. E.

B. E. Carter, G. B. Henning, “The detection of gratings in narrow-band visual noise,”J. Physiol. (London) 219, 355–365 (1971).

Cavonius, C. R.

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

Cowan, J. D.

Daugman, J. D.

Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).

Derrington, A. M.

A. M. Derrington, G. B. Henning, “Errors in direction-of-motion discrimination with complex stimuli,” Vision Res. 27, 61–75 (1987).
[CrossRef] [PubMed]

A. M. Derrington, “Distortion products in geniculate X-cells: a physiological basis for masking by spatially modulated gratings?” Vision Res. 27, 1377–1386 (1987).
[CrossRef]

A. M. Derrington, G. B. Henning, “Pattern discrimination with flickering stimuli,” Vision Res. 21, 597–602 (1981).
[CrossRef] [PubMed]

G. B. Henning, A. M. Derrington, “Direction-of-motion discrimination with complex patterns: further observations,” submitted to J. Opt. Soc. Am. A.
[PubMed]

DeValois, R. L.

D. G. Albrecht, R. L. DeValois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,”J. Physiol. (London) 319, 497–514 (1981).

Estevez, O.

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

Ferrara, V. P.

V. P. Ferrara, H. R. Wilson, “Direction specific masking and the analysis of motion in two dimensions,” Vision Res. 27, 1783–1796 (1987).
[CrossRef]

Gold, B.

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Engelwood Cliffs, N.J., 1975).

Graham, N.

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a test of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Greis, U.

U. Greis, R. Roehler, “Untersuchung der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung,” Opt. Acta 17, 515–526 (1970).
[CrossRef]

Henning, G. B.

A. M. Derrington, G. B. Henning, “Errors in direction-of-motion discrimination with complex stimuli,” Vision Res. 27, 61–75 (1987).
[CrossRef] [PubMed]

G. B. Henning, “Binocular masking and limits on the range of disparity processing,” J. Opt. Soc. Am. A 3(13), P12 (1986).

G. B. Henning, E. Zwicker, “The four factors leading to binaural masking-level differences,” Hearing Res. 19, 29–47 (1985).
[CrossRef]

A. M. Derrington, G. B. Henning, “Pattern discrimination with flickering stimuli,” Vision Res. 21, 597–602 (1981).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments. I. Noise masks,”J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

R. D. Patterson, G. B. Henning, “Stimulus variability and auditory filter shape,”J. Acoust. Soc. Am. 62, 649–664 (1977).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[CrossRef] [PubMed]

B. E. Carter, G. B. Henning, “The detection of gratings in narrow-band visual noise,”J. Physiol. (London) 219, 355–365 (1971).

G. B. Henning, A. M. Derrington, “Direction-of-motion discrimination with complex patterns: further observations,” submitted to J. Opt. Soc. Am. A.
[PubMed]

Hertz, B. G.

G. B. Henning, B. G. Hertz, J. L. Hinton, “Effects of different hypothetical detection mechanisms on the shape of spatial-frequency filters inferred from masking experiments. I. Noise masks,”J. Opt. Soc. Am. 71, 574–581 (1981).
[CrossRef] [PubMed]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[CrossRef] [PubMed]

Hinton, J. L.

Julesz, B.

Kelly, D. H.

Klopfenstein, R. W.

Kronauer, R. E.

Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).

Lehky, S. R.

McFarlane, D. K.

H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Movshon, J. A.

J. A. Movshon, Department of Psychology, York University, York, UK (personal communication, 1987).

Murphy, B. J.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Nachmias, J.

J. Nachmias, B. E. Rogowitz, “Masking by spatially-modulated gratings,” Vision Res. 23, 1621–1629 (1983).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a test of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Patterson, R. D.

R. D. Patterson, G. B. Henning, “Stimulus variability and auditory filter shape,”J. Acoust. Soc. Am. 62, 649–664 (1977).
[CrossRef] [PubMed]

R. D. Patterson, “Auditory filter shape,”J. Acoust. Soc. Am. 55, 802–809 (1974).
[CrossRef] [PubMed]

Philips, G. C.

H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Rabiner, L. R.

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Engelwood Cliffs, N.J., 1975).

Robson, J. G.

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–556 (1968).

J. G. Robson, “Spatial and temporal contrast sensitivity functions of the visual system,”J. Opt. Soc. Am. 56, 1141–1142 (1966).
[CrossRef]

Roehler, R.

U. Greis, R. Roehler, “Untersuchung der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung,” Opt. Acta 17, 515–526 (1970).
[CrossRef]

Rogowitz, B. E.

J. Nachmias, B. E. Rogowitz, “Masking by spatially-modulated gratings,” Vision Res. 23, 1621–1629 (1983).
[CrossRef] [PubMed]

Schade, O. H.

Sperling, G.

Stromeyer, C. F.

Thompson, P. G.

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

van Santen, J. P. H.

Watson, A. B.

A. B. Watson, A. Ahumada, “Model of human visual motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

Wilson, H. R.

V. P. Ferrara, H. R. Wilson, “Direction specific masking and the analysis of motion in two dimensions,” Vision Res. 27, 1783–1796 (1987).
[CrossRef]

H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 17, 19–32 (1979).
[CrossRef]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

J. R. Bergen, H. R. Wilson, J. D. Cowan, “Further evidence for the four mechanisms mediating vision at threshold: sensitivities to complex gratings and periodic patterns,”J. Opt. Soc. Am. 69, 1580–1587 (1979).
[CrossRef] [PubMed]

Zeevi, Y. Y.

Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).

Zwicker, E.

G. B. Henning, E. Zwicker, “The four factors leading to binaural masking-level differences,” Hearing Res. 19, 29–47 (1985).
[CrossRef]

Hearing Res. (1)

G. B. Henning, E. Zwicker, “The four factors leading to binaural masking-level differences,” Hearing Res. 19, 29–47 (1985).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

Y. Y. Zeevi, R. E. Kronauer, J. D. Daugman, “Spatiotemporal masking: asymmetry, nonseparability and facilitation,” Invest. Ophthalmol. Vis. Sci. Suppl. 22, 252 (1982).

J. Acoust. Soc. Am. (2)

R. D. Patterson, “Auditory filter shape,”J. Acoust. Soc. Am. 55, 802–809 (1974).
[CrossRef] [PubMed]

R. D. Patterson, G. B. Henning, “Stimulus variability and auditory filter shape,”J. Acoust. Soc. Am. 62, 649–664 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (9)

J. Opt. Soc. Am. A (6)

J. Physiol. (London) (4)

B. E. Carter, G. B. Henning, “The detection of gratings in narrow-band visual noise,”J. Physiol. (London) 219, 355–365 (1971).

C. Blakemore, F. W. Campbell, “Adaptation to spatial stimuli,”J. Physiol. (London) 200, 11–13 (1969).

D. G. Albrecht, R. L. DeValois, “Striate cortex responses to periodic patterns with and without the fundamental harmonics,”J. Physiol. (London) 319, 497–514 (1981).

F. W. Campbell, J. G. Robson, “Application of Fourier analysis to the visibility of gratings,”J. Physiol. (London) 197, 551–556 (1968).

Opt. Acta (1)

U. Greis, R. Roehler, “Untersuchung der subjectiven Detailerkennbarkeit mit Hilfe der Ortsfrequenzfilterung,” Opt. Acta 17, 515–526 (1970).
[CrossRef]

Perception (1)

D. R. Badcock, “Spatial phase or local contrast discriminations?” Perception 13, Suppl.A3–A4 (1984).

Vision Res. (12)

A. M. Derrington, G. B. Henning, “Errors in direction-of-motion discrimination with complex stimuli,” Vision Res. 27, 61–75 (1987).
[CrossRef] [PubMed]

A. B. Watson, P. G. Thompson, B. J. Murphy, J. Nachmias, “Summation and discrimination of gratings moving in opposite directions,” Vision Res. 20, 341–347 (1980).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 17, 19–32 (1979).
[CrossRef]

A. M. Derrington, G. B. Henning, “Pattern discrimination with flickering stimuli,” Vision Res. 21, 597–602 (1981).
[CrossRef] [PubMed]

H. R. Wilson, J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vision Res. 19, 19–32 (1979).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Philips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

V. P. Ferrara, H. R. Wilson, “Direction specific masking and the analysis of motion in two dimensions,” Vision Res. 27, 1783–1796 (1987).
[CrossRef]

G. B. Henning, B. G. Hertz, D. E. Broadbent, “Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency,” Vision Res. 15, 887–897 (1975).
[CrossRef] [PubMed]

J. Nachmias, B. E. Rogowitz, “Masking by spatially-modulated gratings,” Vision Res. 23, 1621–1629 (1983).
[CrossRef] [PubMed]

A. M. Derrington, “Distortion products in geniculate X-cells: a physiological basis for masking by spatially modulated gratings?” Vision Res. 27, 1377–1386 (1987).
[CrossRef]

O. Estevez, C. R. Cavonius, “Low-frequency attenuation in the detection of gratings: sorting out the artefacts,” Vision Res. 16, 497–500 (1976).
[CrossRef]

N. Graham, J. Nachmias, “Detection of grating patterns containing two spatial frequencies: a test of single-channel and multiple-channel models,” Vision Res. 11, 251–259 (1971).
[CrossRef] [PubMed]

Other (5)

For observer PS, psychometric functions are based on 50 observations per point.

L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Engelwood Cliffs, N.J., 1975).

J. A. Movshon, Department of Psychology, York University, York, UK (personal communication, 1987).

G. B. Henning, A. M. Derrington, “Direction-of-motion discrimination with complex patterns: further observations,” submitted to J. Opt. Soc. Am. A.
[PubMed]

D. R. Badcock, “Some aspects of spatial phase coding in man,” D. Phil. thesis (Oxford University, Oxford, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Contrast sensitivity (the reciprocal of the contrast corresponding to 75% correct detection) as a function of spatial frequency (c/deg); both axes are logarithmic. The nominal duration of the signals was 2 sec; at and below 1 c/deg, the signals subtended 28 × 28 deg of visual angle; above that frequency, they subtended 7 × 7 deg. A spatial (horizontally oriented) Hanning window of the appropriate extent was used in both cases. Data for three different temporal envelopes are shown: open symbols, a raised-cosine (Hanning) temporal window; half-filled symbols, a rectangularly gated, 2-Hz counterphase flickering envelope; filled symbols, a rectangularly gated, 10-Hz counterphase flickering envelope. (b) Data for two observers are shown as in (a) except that the field size was 7 × 7 deg.

Fig. 2
Fig. 2

(a) Contrast sensitivity as a function of spatial frequency for observer GBH; both axes are logarithmic. The nominal duration of the signals was 1 sec, and they subtended 7 × 7 deg. Rectangular spatial envelopes were used. Data for three temporal envelopes are shown: open symbols, a raised-cosine (Hanning) window; half-filled symbols, signals drifting to the left or right within the Hanning temporal window at a rate of 2.7 deg/sec; filled symbols, signals drifting at a rate of 10.9 deg/sec. The direction of motion was chosen at random before each trial but was constant in any observation interval. (b) Same as (a) but for a signal duration of 90 msec.

Fig. 3
Fig. 3

(a) Same as Fig. 2(a) but for observer PS. (b) Same as (a) except that the signal duration was 90 msec.

Fig. 4
Fig. 4

(a) Signal contrast (percent) as a function of the cutoff frequency of the noise used to mask either a 0.5- or a 2-c/deg signal for observer GBH. Both axes are logarithmic. Data shown to the left of each signal frequency (marked by vertical arrows) were obtained with low-pass noise with the cutoff frequency shown on the abscissa; data to the right of the signal frequency were obtained with high-pass noise filling the band from the cutoff frequency to 18 c/deg. Data for the temporal envelopes of Fig. 1 are shown. Both the masker and the signal, when it was present, had the same temporal envelope. (b) Same as (a) but for observer PS with 2-c/deg signals only.

Fig. 5
Fig. 5

(a) Same as Fig. 4(a) except that the signal appeared only with the slowly changing Hanning temporal envelope, whereas the noise had either the rectangularly gated, 2-Hz counterphase flickering envelope (half-filled symbols) or the rectangularly gated, 10-Hz counterphase flickering envelope (filled symbols). (b) Same as Fig. 4(b) except that the signal appeared only with the slowly changing Hanning temporal envelope, whereas the noise had either the rectangularly gated, 2-Hz counterphase flickering envelope (half-filled symbols) or the rectangularly gated, 10-Hz counterphase flickering envelope (filled symbols).

Fig. 6
Fig. 6

(a) Same as Fig. 5(a) except that the 2-c/deg signal and the noise drifted at 2.7 deg/sec. The signal duration was 1 sec, and there was a temporal Hanning window within which the stimuli drifted. The symbols without a stroke show the results obtained when the signal and the masker drifted in the same direction; the symbols with a stroke show the results obtained when the masker and signal drifted in opposite directions. The horizontal double-headed arrow indicates the threshold of the signal when there was no noise. (b) Same as (a) but for observer PS.

Fig. 7
Fig. 7

(a) Same as for Fig. 6(a) except that the signal duration was 90 msec. (b) Same as for Fig. 6(b) except that the signal duration was 90 msec.

Fig. 8
Fig. 8

Results obtained in the fashion described in Fig. 6 and 7, with high-pass noise and signal frequencies of 1 c/deg (squares) and 4 c/deg (triangles). The drift rate was 2.7 deg/sec, and data for both long (1-sec) and short (90-msec) exposure durations are shown. Symbols without strokes denote results obtained with the signal and the masker moving in the same direction; symbols with a stroke denote results obtained with signal and masker moving in opposite directions.

Fig. 9
Fig. 9

Same as Fig. 7(a) except that the drift rate was 10.9 deg/sec.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

log ( At ) = 2.68 log ( f / f 0 ) ,
log ( At ) = 1.62 log ( f / f 0 ) .
P s = k · N 0 f d f ,

Metrics