Abstract

An optical-fiber Fox–Smith resonator was demonstrated for the first time to our knowledge. It was applied to obtain single-longitudinal-mode operation from an erbium-doped fiber laser. Both the passive performance and the active performance of the device are studied in detail. Good agreement is found between theoretical and experimental results.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stone, D. Marcuse, “Ultrahigh finesse fiber Fabry–Perot interferometers,” IEEE J. Lightwave Technol. LT-4, 382–385 (1986).
    [CrossRef]
  2. L. F. Stokes, M. Chodorow, H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [CrossRef] [PubMed]
  3. I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber mirrors,” Appl. Opt. 26, 2197–2201 (1987).
    [CrossRef] [PubMed]
  4. P. Urquhart, “Transversely coupled fiber Fabry–Perot resonator: theory,” Appl. Opt. 26, 456–463 (1987).
    [CrossRef] [PubMed]
  5. M. Brierley, P. Urquhart, “Transversely coupled fiber Fabry–Perot resonators: performance characteristics,” Appl. Opt. 26, 4841–4845 (1987).
    [CrossRef] [PubMed]
  6. B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1981).
    [CrossRef] [PubMed]
  7. R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).
  9. P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5, 802–812 (1988).
    [CrossRef]
  10. P. W. Smith, “Stabilized single frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
    [CrossRef]
  11. G. Merkle, J. Heppner, “CO2waveguide laser with Fox–Smith mode selector,” IEEE J. Quantum Electron. QE-19, 1663–1667 (1983).
    [CrossRef]
  12. F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).
  13. S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
    [CrossRef]
  14. V. S. Smirnov, “Dye lasers using a three-mirror cavity with lamp excitation,” Zh. Prikl. Spektrosk. 34, 420–423 (1981).
  15. C.-L. Chen, “Directional coupler resonators as guided-wave optical components: a proposal,” Appl. Opt. 26, 2612–2617 (1987).
    [CrossRef] [PubMed]
  16. R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).
  17. W. W. Rigrod, “Selectivity of open-ended interferometric resonators,” IEEE J. Quantum Electron. QE-6, 9–14 (1970).
    [CrossRef]
  18. M. DiDomenico, “Characteristics of a single-frequency Michelson-type He–Ne gas laser,” IEEE J. Quantum Electron. QE-2, 311–322 (1966).
    [CrossRef]
  19. C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
    [CrossRef]
  20. R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
    [CrossRef]

1988

P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5, 802–812 (1988).
[CrossRef]

1987

1986

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

J. Stone, D. Marcuse, “Ultrahigh finesse fiber Fabry–Perot interferometers,” IEEE J. Lightwave Technol. LT-4, 382–385 (1986).
[CrossRef]

1985

R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).

1983

G. Merkle, J. Heppner, “CO2waveguide laser with Fox–Smith mode selector,” IEEE J. Quantum Electron. QE-19, 1663–1667 (1983).
[CrossRef]

1982

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).

L. F. Stokes, M. Chodorow, H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
[CrossRef] [PubMed]

1981

V. S. Smirnov, “Dye lasers using a three-mirror cavity with lamp excitation,” Zh. Prikl. Spektrosk. 34, 420–423 (1981).

B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1981).
[CrossRef] [PubMed]

1972

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

1970

W. W. Rigrod, “Selectivity of open-ended interferometric resonators,” IEEE J. Quantum Electron. QE-6, 9–14 (1970).
[CrossRef]

1966

M. DiDomenico, “Characteristics of a single-frequency Michelson-type He–Ne gas laser,” IEEE J. Quantum Electron. QE-2, 311–322 (1966).
[CrossRef]

1965

P. W. Smith, “Stabilized single frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

Ainslie, B. J.

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber mirrors,” Appl. Opt. 26, 2197–2201 (1987).
[CrossRef] [PubMed]

Armitage, J. R.

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

Bergh, R.

R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Brierley, M.

Cameron, K. H.

R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).

Chen, C.-L.

Chodorow, M.

Craig, S. P.

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber mirrors,” Appl. Opt. 26, 2197–2201 (1987).
[CrossRef] [PubMed]

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

Dandridge, A.

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

DiDomenico, M.

M. DiDomenico, “Characteristics of a single-frequency Michelson-type He–Ne gas laser,” IEEE J. Quantum Electron. QE-2, 311–322 (1966).
[CrossRef]

Dmitrieva, E. A.

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

Giallorenzi, T. G.

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

Heppner, J.

G. Merkle, J. Heppner, “CO2waveguide laser with Fox–Smith mode selector,” IEEE J. Quantum Electron. QE-19, 1663–1667 (1983).
[CrossRef]

Hill, K. O.

Kartaleva, S. S.

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

Kawasaki, B. S.

Korolev, F. A.

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

Kotler, G.

R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).

Lamont, R. G.

Marcuse, D.

J. Stone, D. Marcuse, “Ultrahigh finesse fiber Fabry–Perot interferometers,” IEEE J. Lightwave Technol. LT-4, 382–385 (1986).
[CrossRef]

Matthews, M. R.

R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).

Mears, R. J.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

Merkle, G.

G. Merkle, J. Heppner, “CO2waveguide laser with Fox–Smith mode selector,” IEEE J. Quantum Electron. QE-19, 1663–1667 (1983).
[CrossRef]

Miles, R. O.

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

Millar, C. A.

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber mirrors,” Appl. Opt. 26, 2197–2201 (1987).
[CrossRef] [PubMed]

Miller, I. D.

I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber mirrors,” Appl. Opt. 26, 2197–2201 (1987).
[CrossRef] [PubMed]

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

Mortimore, D. B.

Odinstov, A. I.

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

Payne, D. B.

Payne, D. N.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

Petuchowski, S. J.

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

Poole, S. B.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Selectivity of open-ended interferometric resonators,” IEEE J. Quantum Electron. QE-6, 9–14 (1970).
[CrossRef]

Shaw, H. J.

L. F. Stokes, M. Chodorow, H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
[CrossRef] [PubMed]

R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).

Smirnov, V. S.

V. S. Smirnov, “Dye lasers using a three-mirror cavity with lamp excitation,” Zh. Prikl. Spektrosk. 34, 420–423 (1981).

Smith, P. W.

P. W. Smith, “Stabilized single frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

Stokes, L. F.

Stone, J.

J. Stone, D. Marcuse, “Ultrahigh finesse fiber Fabry–Perot interferometers,” IEEE J. Lightwave Technol. LT-4, 382–385 (1986).
[CrossRef]

Urquhart, P.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Wyatt, R.

R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).

Appl. Opt.

Appl. Phys. Lett.

S. J. Petuchowski, R. O. Miles, A. Dandridge, T. G. Giallorenzi, “Phase sensitivity and linewidth narrowing in a Fox–Smith configured semiconductor laser,” Appl. Phys. Lett. 40, 302–304 (1982).
[CrossRef]

Br. Telecom. Technol. J.

R. Wyatt, K. H. Cameron, M. R. Matthews, “Tunable narrow line external cavity lasers for coherent optical systems,” Br. Telecom. Technol. J. 3, 5–12 (1985).

Electron. Lett.

R. Bergh, G. Kotler, H. J. Shaw, “Single mode fibre optic directional coupler,” Electron. Lett. 16, 929 (1982).

C. A. Millar, I. D. Miller, B. J. Ainslie, S. P. Craig, J. R. Armitage, “Low-threshold cw operation of an erbium-doped fibre laser pumped at 807 nm wavelength,” Electron. Lett. 23, 865–866 (1987).
[CrossRef]

R. J. Mears, L. Reekie, S. B. Poole, D. N. Payne, “Low-threshold tunable and Q-switched fibre laser operating at 1.55 μ m,” Electron. Lett. 22, 159–160 (1986).
[CrossRef]

IEEE J. Lightwave Technol.

J. Stone, D. Marcuse, “Ultrahigh finesse fiber Fabry–Perot interferometers,” IEEE J. Lightwave Technol. LT-4, 382–385 (1986).
[CrossRef]

IEEE J. Quantum Electron.

P. W. Smith, “Stabilized single frequency output from a long laser cavity,” IEEE J. Quantum Electron. QE-1, 343–348 (1965).
[CrossRef]

G. Merkle, J. Heppner, “CO2waveguide laser with Fox–Smith mode selector,” IEEE J. Quantum Electron. QE-19, 1663–1667 (1983).
[CrossRef]

W. W. Rigrod, “Selectivity of open-ended interferometric resonators,” IEEE J. Quantum Electron. QE-6, 9–14 (1970).
[CrossRef]

M. DiDomenico, “Characteristics of a single-frequency Michelson-type He–Ne gas laser,” IEEE J. Quantum Electron. QE-2, 311–322 (1966).
[CrossRef]

J. Opt. Soc. Am. A

P. Urquhart, “Compound optical-fiber-based resonators,” J. Opt. Soc. Am. A 5, 802–812 (1988).
[CrossRef]

Opt. Lett.

Zh. Prikl. Spektrosk.

V. S. Smirnov, “Dye lasers using a three-mirror cavity with lamp excitation,” Zh. Prikl. Spektrosk. 34, 420–423 (1981).

F. A. Korolev, S. S. Kartaleva, A. I. Odinstov, E. A. Dmitrieva, “Effect of the laser field on the contours of lines amplified by neighbouring transitions in an argon laser,” Zh. Prikl. Spektrosk. 17, 980–983 (1972).

Other

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Fiber Fox–Smith resonator. The coupler used is a fused coupler, and the mirrors are butted directly against the fiber ends.

Fig. 2
Fig. 2

Experimental arrangement for the characterization of the passive fiber Fox–Smith resonator. The laser source is a 1.541-μm external-cavity semiconductor diode laser. The variation of output with wavelength was displayed on a Le Croy 9400 oscilloscope.

Fig. 3
Fig. 3

Variation of output intensity with wavelength for (a) type I and (b) type II TCFFP resonators. The specifications for the mirrors, the fiber, and the coupler are given in Section 3. Also, Δt is defined in Section 3.

Fig. 4
Fig. 4

Variation of output intensity with wavelength for a fiber Fox–Smith resonator: (a) theoretical results and (b) experimental results. The input was through arm 1, and the output was from arm 4, both of which are as labeled in Fig. 1. The coupler and the mirrors are as described for Fig. 3.

Fig. 5
Fig. 5

Greater detail of the output response illustrated in Fig. 4: (a) theoretical and (c) experimental plots of one of the maximum peaks with the two peaks on either side; (b) theoretical and (d) experimental plots of only the maximum peak.

Fig. 6
Fig. 6

Variation of output intensity with wavelength for a fiber Fox–Smith resonator: (a) theoretical and (b) experimental results. The input was from arm 1, and the output was from arm 2, both of which are as labeled in Fig. 1. The coupler and the mirrors are as described for Fig. 4.

Fig. 7
Fig. 7

Schematic description of single-longitudinal-mode operation of an erbium fiber laser with a Fox–Smith resonator.

Fig. 8
Fig. 8

Experimental equipment for producing and detecting single-longitudinal-mode output from a Fox–Smith fiber laser. The spectrum analyzer is an Anrizu model MS96A. Details of the constituent parts of the Fox–Smith laser are given in Section 6. FP1, FP2, Fabry–Perot interferometers.

Fig. 9
Fig. 9

Output from the optical spectrum analyzer. The vertical scale is logarithmic. Argon-ion laser output power is 350 mW.

Fig. 10
Fig. 10

Variation of fiber Fox–Smith laser output as a function of the output power of the argon-ion laser.

Fig. 11
Fig. 11

(a) Spectral linewidth of a Fox–Smith fiber laser limited by the resolution of the scanning Fabry–Perot interferometer. (b) Response of a Fabry–Perot interferometer, showing a free spectral range of 7.5 GHz.

Fig. 12
Fig. 12

(a) Spectral linewidth of Fox–Smith fiber laser limited by the passive linewidth. (b) Response of a Fabry–Perot interferometer, showing a free spectral range of 300 MHz.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I out / I in = T 1 T 4 / D ,
T i = t i 2 ( 1 K ) 1 / 2 ( 1 γ ) 1 / 2 exp ( α l i ) i = 1 , 4 ,
D = ( 1 R 1 R 4 + R 1 R 3 ) 2 + 4 R 1 R 4 sin 2 ( β L 1 ) 4 R 1 R 3 sin 2 ( β L 2 ) + 4 R 1 R 4 R 1 R 3 sin 2 [ β ( L 1 L 2 ) ] .
R i = r i ( 1 K ) 1 / 2 ( 1 γ ) 1 / 2 exp ( 2 a l i ) ,
R i = r i K 1 / 2 ( 1 γ ) 1 / 2 exp ( 2 α l i ) ,
L 1 = l i + l 4 ,
L 2 = l i + l 3 .
β L 1 = m π , m = 1,2 , ,
β L 2 = ( n ± 1 2 ) π , n = 1,2 , ,
I out / I in = ( T 1 t 1 ) 2 { ( R 3 + R 4 ) 2 4 R 3 R 4 sin 2 [ β ( L 1 L 2 ) ] } / D .
( β + Δ β ) L 1 = m π , m = 1,2 , ,
( β + Δ β ) L 2 = ( n ± 1 2 ) π , n = 1,2 , ,

Metrics