Abstract

The contrast dependence of simultaneous masking has been measured using isochromatic yellow–black luminance sinusoids and isoluminant red–green chrominance gratings. Masking functions for all four combinations of chromatic and luminance masks and tests are reported. In the two same-on-same conditions (luminance mask/luminance test and chromatic mask/chromatic test) these functions (increment threshold contrast versus mask contrast) have the typical dipper shape and are almost identical when test and mask contrasts are normalized to the unmasked contrast thresholds. The contrast dependence of the luminance mask/color test and color mask/luminance test functions are quite different. The luminance mask/color test shows facilitation over a broad range of both subthreshold and suprathreshold contrasts of the luminance mask. In the color mask/luminance test condition facilitation is never observed, but at suprathreshold contrasts a 2-cycle/degree (c/deg) chromatic grating masks a 2-c/deg luminance grating as strongly as does a luminance mask. The luminance mask/chromatic test results are invariant over the 0.25–2-c/deg spatial-frequency range, whereas the robust masking of luminance by color at 2 c/deg diminishes at lower spatial frequencies. The spatial-frequency selectivity of the luminance-facilitates-color interaction is much broader than facilitatory interactions in either the color–color or luminance–luminance conditions. Possible mechanisms of color–luminance interactions are considered. The lack of facilitation in the color mask/luminance test condition precludes a simple pedestal interpretation of this masking interaction. The data are, however, consistent with models that invoke inhibitory or more elaborate excitatory masking interactions.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. C. van der Horst, M. A. Bouman, “Spatiotemporal chromaticity discrimination,”J. Opt. Soc. Am. 59, 1482–1488 (1969).
    [CrossRef] [PubMed]
  2. E. M. Granger, J. C. Heurtley, “Visual chromaticity-modulation transfer function,”J. Opt. Soc. Am. 63, 1173–1174 (1973).
    [CrossRef] [PubMed]
  3. K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
    [CrossRef] [PubMed]
  4. D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
    [CrossRef] [PubMed]
  5. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue-yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).
  6. E. Switkes, K. K. De Valois, “Luminance and chromaticity interactions in spatial vision,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  7. F. W. Campbell, J. J. Kulikowski (1966), “Orientation selectivity of the human visual system,”J. Physiol. (London) 187, 437–445 (1966).
  8. G. E. Legge, “Spatial frequency masking in human vision: binocular interactions,”J. Opt. Soc. Am. 69, 838–847 (1979).
    [CrossRef] [PubMed]
  9. H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
    [CrossRef] [PubMed]
  10. G. C. Philips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
    [CrossRef]
  11. L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
    [CrossRef] [PubMed]
  12. P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).
  13. J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
    [CrossRef] [PubMed]
  14. J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
    [CrossRef] [PubMed]
  15. D. J. Lasley, T. E. Cohn “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981).
    [CrossRef] [PubMed]
  16. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985).
    [CrossRef] [PubMed]
  17. G. E. Legge, J. M. Foley, “Contrast masking in human vision,”J. Opt. Soc. Am. 70, 1458–1471 (1980).
    [CrossRef] [PubMed]
  18. D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
    [CrossRef]
  19. H. Levitt, “Transformed up-down methods in psychoacoustics,”J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  20. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
    [CrossRef] [PubMed]
  21. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
    [CrossRef] [PubMed]
  22. G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
    [CrossRef]
  23. G. J. Burton, “Contrast discrimination by the human visual system,” Biol. Cybernet. 40, 27–48 (1981).
    [CrossRef]
  24. R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,”J. Opt. Soc. Am. 56, 966–977 (1966).
    [CrossRef] [PubMed]
  25. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).
  26. A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.
  27. R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).
  28. S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).
  29. R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics: Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978).
    [CrossRef]
  30. S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
    [CrossRef] [PubMed]
  31. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  32. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).
  33. Also see Pelli,16 whose intrinsic uncertainty model suggests that a mask providing pedestals in a number of channels (noise) would not lead to facilitation, whereas a mask that gives a pedestal only for the detecting channels (e.g., a sinusoidal mask) will yield facilitation.
  34. E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. (London) 330, 125–143 (1982).
  35. R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
    [PubMed]
  36. However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].
  37. E. Switkes, K. K. De Valois have found that, under similar conditions, luminance masking, with identical mask and test frequencies, is greater when test and mask are at 90° or 270° relative phase than when at 0° or 180° (as determined primarily by the net contrast increment or decrement occurring when a mask and a test of the same spatial frequency are added in various relative phases).
  38. R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. V, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975).
  39. C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,”J. Physiol. (London) 213, 157–174 (1971).
  40. N. Graham, “Spatial frequency channels in human vision: detecting edges without edge detectors,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980).
  41. T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
    [CrossRef] [PubMed]
  42. R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
    [CrossRef] [PubMed]
  43. J. J. Kulikowski, “Contrast constancy and the linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
    [CrossRef]
  44. B. Gouled-Smith, J. P. Thomas, “Contrast discrimination: nonmonotonic psychometric function suggests dual mechanisms,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).
  45. S. R. Lehky, H. R. Wilson, “Non-monotonicity at high contrasts in the contrast increment threshold curve,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).
  46. F. H. C. Marriott, “The two-colour threshold technique of Stiles,” in The Eye, Vol. 2A, H. Davson, ed. (Academic, New York, 1976).
  47. T. W. Butler, L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
    [CrossRef] [PubMed]
  48. D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
    [CrossRef] [PubMed]
  49. K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978).
    [CrossRef]
  50. O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
    [CrossRef] [PubMed]
  51. A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).
  52. R. L. Hilz, G. Huppmann, C. R. Cavonius, “Influence of luminance contrast on hue discrimination,”J. Opt. Soc. Am. 64, 763–766 (1974).
    [CrossRef] [PubMed]
  53. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).
  54. A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–920 (1986).
    [CrossRef] [PubMed]
  55. O. E. Favreau, “Interference in colour-contingent motion after-effects,”Q. J. Exp. Psychol. 28, 553–560 (1976).
    [CrossRef] [PubMed]
  56. P. Cavanagh, O. E. Favreau, “Color and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
    [CrossRef] [PubMed]
  57. A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
    [CrossRef] [PubMed]

1988 (1)

R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
[PubMed]

1987 (1)

A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.

1986 (3)

T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–920 (1986).
[CrossRef] [PubMed]

1985 (9)

P. Cavanagh, O. E. Favreau, “Color and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef] [PubMed]

B. Gouled-Smith, J. P. Thomas, “Contrast discrimination: nonmonotonic psychometric function suggests dual mechanisms,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

S. R. Lehky, H. R. Wilson, “Non-monotonicity at high contrasts in the contrast increment threshold curve,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).

However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue-yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).

D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508–1531 (1985).
[CrossRef] [PubMed]

1984 (3)

G. C. Philips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef]

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

1983 (5)

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef] [PubMed]

D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
[CrossRef] [PubMed]

1982 (2)

E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. (London) 330, 125–143 (1982).

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

1981 (6)

O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef] [PubMed]

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152–4155 (1981).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef]

G. J. Burton, “Contrast discrimination by the human visual system,” Biol. Cybernet. 40, 27–48 (1981).
[CrossRef]

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

D. J. Lasley, T. E. Cohn “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

1978 (2)

T. W. Butler, L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[CrossRef] [PubMed]

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

1976 (2)

O. E. Favreau, “Interference in colour-contingent motion after-effects,”Q. J. Exp. Psychol. 28, 553–560 (1976).
[CrossRef] [PubMed]

J. J. Kulikowski, “Contrast constancy and the linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef]

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974 (2)

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

R. L. Hilz, G. Huppmann, C. R. Cavonius, “Influence of luminance contrast on hue discrimination,”J. Opt. Soc. Am. 64, 763–766 (1974).
[CrossRef] [PubMed]

1973 (1)

1971 (2)

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,”J. Physiol. (London) 213, 157–174 (1971).

H. Levitt, “Transformed up-down methods in psychoacoustics,”J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

1969 (1)

1968 (1)

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

1966 (2)

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,”J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

F. W. Campbell, J. J. Kulikowski (1966), “Orientation selectivity of the human visual system,”J. Physiol. (London) 187, 437–445 (1966).

Abramov, I.

Albrecht, D. G.

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Alexander, J. V.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

Anstis, S.

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Barfield, L. P.

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

Barkdoll, E.

However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].

Blakemore, C.

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,”J. Physiol. (London) 213, 157–174 (1971).

Bouman, M. A.

Boynton, R. M.

R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics: Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978).
[CrossRef]

Bradley, A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).

Burns, S. A.

Burton, G. J.

G. J. Burton, “Contrast discrimination by the human visual system,” Biol. Cybernet. 40, 27–48 (1981).
[CrossRef]

Butler, T. W.

T. W. Butler, L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell, J. J. Kulikowski (1966), “Orientation selectivity of the human visual system,”J. Physiol. (London) 187, 437–445 (1966).

Cavanagh, P.

P. Cavanagh, O. E. Favreau, “Color and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef] [PubMed]

O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef] [PubMed]

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

Cavonius, C. R.

Chumbly, J. I.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

Cohn, T. E.

D. J. Lasley, T. E. Cohn “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981).
[CrossRef] [PubMed]

Cole, G. R.

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).

De Valois, K. K.

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef] [PubMed]

E. Switkes, K. K. De Valois, “Luminance and chromaticity interactions in spatial vision,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

E. Switkes, K. K. De Valois have found that, under similar conditions, luminance masking, with identical mask and test frequencies, is greater when test and mask are at 90° or 270° relative phase than when at 0° or 180° (as determined primarily by the net contrast increment or decrement occurring when a mask and a test of the same spatial frequency are added in various relative phases).

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978).
[CrossRef]

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. V, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975).

De Valois, R. L.

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

R. L. De Valois, I. Abramov, G. H. Jacobs, “Analysis of response patterns of LGN cells,”J. Opt. Soc. Am. 56, 966–977 (1966).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. V, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975).

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Elsner, A. E.

Favreau, O. E.

P. Cavanagh, O. E. Favreau, “Color and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef] [PubMed]

O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef] [PubMed]

O. E. Favreau, “Interference in colour-contingent motion after-effects,”Q. J. Exp. Psychol. 28, 553–560 (1976).
[CrossRef] [PubMed]

Foley, J. M.

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

G. E. Legge, J. M. Foley, “Contrast masking in human vision,”J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

Gillman, C. B.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

Gouled-Smith, B.

B. Gouled-Smith, J. P. Thomas, “Contrast discrimination: nonmonotonic psychometric function suggests dual mechanisms,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

Graham, N.

N. Graham, “Spatial frequency channels in human vision: detecting edges without edge detectors,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980).

Granger, E. M.

Green, D. M.

T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
[CrossRef] [PubMed]

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Guth, S. L.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

Hamer, R. D.

R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
[CrossRef] [PubMed]

Hamilton, S. L.

R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
[PubMed]

Hanna, T. E.

T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
[CrossRef] [PubMed]

Heurtley, J. C.

Hilz, R. L.

Howarth, P. A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

Huppmann, G.

Jacobs, G. H.

Kaplan, E.

E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. (London) 330, 125–143 (1982).

Katz, M.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Kelly, D. H.

Krauskopf, J.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Kronauer, R. E.

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).

Kulikowski, J. J.

J. J. Kulikowski, “Contrast constancy and the linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef]

F. W. Campbell, J. J. Kulikowski (1966), “Orientation selectivity of the human visual system,”J. Physiol. (London) 187, 437–445 (1966).

Lapham, L. W.

However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].

Lasley, D. J.

D. J. Lasley, T. E. Cohn “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981).
[CrossRef] [PubMed]

Lee, B. B.

A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.

Legge, G. E.

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef]

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

G. E. Legge, J. M. Foley, “Contrast masking in human vision,”J. Opt. Soc. Am. 70, 1458–1471 (1980).
[CrossRef] [PubMed]

G. E. Legge, “Spatial frequency masking in human vision: binocular interactions,”J. Opt. Soc. Am. 69, 838–847 (1979).
[CrossRef] [PubMed]

Lehky, S. R.

S. R. Lehky, H. R. Wilson, “Non-monotonicity at high contrasts in the contrast increment threshold curve,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

Lennie, P.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

Levitt, H.

H. Levitt, “Transformed up-down methods in psychoacoustics,”J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Lewis, A. L.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Marriott, F. H. C.

F. H. C. Marriott, “The two-colour threshold technique of Stiles,” in The Eye, Vol. 2A, H. Davson, ed. (Academic, New York, 1976).

Martin, P. R.

A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.

McFarlane, D. K.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Merigan, W. H.

However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue-yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

Nachmias, J.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,”J. Physiol. (London) 213, 157–174 (1971).

Oehrlein, C.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Patterson, M. M.

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

Pelli, D. G.

Philips, G. C.

Phillips, G. C.

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Pokorny, J.

A. E. Elsner, J. Pokorny, S. A. Burns, “Chromaticity discrimination: effects of luminance contrast and spatial frequency,” J. Opt. Soc. Am. A 3, 916–920 (1986).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Powell, I.

Riggs, L. A.

T. W. Butler, L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[CrossRef] [PubMed]

Sansbury, R. V.

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

Sclar, G.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).

Shapley, R. M.

E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. (London) 330, 125–143 (1982).

Smith, R. A.

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Stromeyer, C. F.

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Swift, D. J.

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

Switkes, E.

R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
[PubMed]

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).

K. K. De Valois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,”J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef] [PubMed]

E. Switkes, K. K. De Valois, “Luminance and chromaticity interactions in spatial vision,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

E. Switkes, K. K. De Valois have found that, under similar conditions, luminance masking, with identical mask and test frequencies, is greater when test and mask are at 90° or 270° relative phase than when at 0° or 180° (as determined primarily by the net contrast increment or decrement occurring when a mask and a test of the same spatial frequency are added in various relative phases).

Thomas, J. P.

B. Gouled-Smith, J. P. Thomas, “Contrast discrimination: nonmonotonic psychometric function suggests dual mechanisms,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

Thorell, L. G.

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

Tolhurst, D. J.

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

Tootell, R. B. H.

R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
[PubMed]

Valberg, A.

A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.

van der Horst, G. J. C.

Verrillo, R. T.

R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
[CrossRef] [PubMed]

Von Gierke, S. M.

T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
[CrossRef] [PubMed]

Wilson, H. R.

S. R. Lehky, H. R. Wilson, “Non-monotonicity at high contrasts in the contrast increment threshold curve,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

G. C. Philips, H. R. Wilson, “Orientation bandwidths of spatial mechanisms measured by masking,” J. Opt. Soc. Am. A 1, 226–232 (1984).
[CrossRef]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

Zwislocki, J. J.

R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biol. Cybernet. (1)

G. J. Burton, “Contrast discrimination by the human visual system,” Biol. Cybernet. 40, 27–48 (1981).
[CrossRef]

Invest. Opthalmol. Vis. Sci. (2)

However, evidence for the participation of the parvocellular pathway in psychophysical contrast sensitivity has also been presented [W. H. Merigan, E. Barkdoll, L. W. Lapham, “Acrylamide effects on the macaque visual system, I. Physcho-physics and electrophysiology,” Invest. Opthalmol. Vis. Sci. 26, 309–326 (1985)].

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Interactions between luminance and chromatic mechanisms,” Invest. Opthalmol. Vis. Sci. 26, 206 (1985).

Invest. Opthalmol. Vis. Sci. Suppl. (5)

A. Bradley, E. Switkes, K. K. De Valois, “Orientation and spatial frequency selectivity of adaptation to isoluminant color patterns,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 182 (1985).

B. Gouled-Smith, J. P. Thomas, “Contrast discrimination: nonmonotonic psychometric function suggests dual mechanisms,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

S. R. Lehky, H. R. Wilson, “Non-monotonicity at high contrasts in the contrast increment threshold curve,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 139 (1985).

A recent report [B. B. Lee, P. R. Martin, A. Valberg, “The physiological basis of heterochromatic flicker photometry,” Invest. Opthalmol. Vis. Sci. Suppl. 28, 240 (1987)] indicates that in macaque the responses of nonspectrally opponent phasic ganglion cells to heterochromatic flicker are minimized when the relative intensities of the lights are adjusted to match the human luminosity function.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in the striate cortex of macaque,” Invest. Opthalmol. Vis. Sci. Suppl. 26, 8 (1985).

J. Acoust. Soc. Am. (3)

H. Levitt, “Transformed up-down methods in psychoacoustics,”J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

T. E. Hanna, S. M. Von Gierke, D. M. Green, “Detection and intensity discrimination of a sinusoid,”J. Acoust. Soc. Am. 80, 1335–1340 (1986).
[CrossRef] [PubMed]

R. D. Hamer, R. T. Verrillo, J. J. Zwislocki, “Vibrotacile masking of pacinian and non-pacinian channels,”J. Acoust. Soc. Am. 73, 1293–1303 (1983).
[CrossRef] [PubMed]

J. Neurosci. (1)

R. B. H. Tootell, S. L. Hamilton, E. Switkes, “Functional anatomy of macaque striate cortex IV: Contrast and magno/parvo streams,”J. Neurosci. 8, 1594–1609 (1988).
[PubMed]

J. Opt. Soc. Am. (8)

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (5)

C. Blakemore, J. Nachmias, “The orientation specificity of two visual after-effects,”J. Physiol. (London) 213, 157–174 (1971).

F. W. Campbell, J. J. Kulikowski (1966), “Orientation selectivity of the human visual system,”J. Physiol. (London) 187, 437–445 (1966).

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and blue-yellow chromatic gratings,”J. Physiol. (London) 359, 381–400 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,”J. Physiol. (London) 357, 241–265 (1984).

E. Kaplan, R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,”J. Physiol. (London) 330, 125–143 (1982).

Q. J. Exp. Psychol. (1)

O. E. Favreau, “Interference in colour-contingent motion after-effects,”Q. J. Exp. Psychol. 28, 553–560 (1976).
[CrossRef] [PubMed]

Science (1)

O. E. Favreau, P. Cavanagh, “Color and luminance: independent frequency shifts,” Science 212, 831–832 (1981).
[CrossRef] [PubMed]

Vision Res. (14)

P. Cavanagh, O. E. Favreau, “Color and luminance share a common motion pathway,” Vision Res. 25, 1595–1601 (1985).
[CrossRef] [PubMed]

J. J. Kulikowski, “Contrast constancy and the linearity of contrast sensation,” Vision Res. 16, 1419–1431 (1976).
[CrossRef]

T. W. Butler, L. A. Riggs, “Color differences scaled by chromatic modulation sensitivity functions,” Vision Res. 18, 1407–1416 (1978).
[CrossRef] [PubMed]

D. J. Tolhurst, L. P. Barfield, “Interactions between spatial frequency channels,” Vision Res. 18, 951–958 (1978).
[CrossRef] [PubMed]

S. L. Guth, J. V. Alexander, J. I. Chumbly, C. B. Gillman, M. M. Patterson, “Factors affecting luminance additivity at threshold among normal and color-blind subjects and elaborations of trichromatic-opponent color theory,” Vision Res. 8, 913–928 (1968).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361–366 (1986).
[CrossRef] [PubMed]

G. E. Legge, “A power law for contrast discrimination,” Vision Res. 21, 457–467 (1981).
[CrossRef]

L. G. Thorell, R. L. De Valois, D. G. Albrecht, “Spatial mapping of monkey V1 cells with pure color and luminance stimuli,” Vision Res. 24, 751–769 (1984).
[CrossRef] [PubMed]

H. R. Wilson, D. K. McFarlane, G. C. Phillips, “Spatial frequency tuning of orientation selective units estimated by oblique masking,” Vision Res. 23, 873–882 (1983).
[CrossRef] [PubMed]

D. J. Swift, R. A. Smith, “Spatial frequency masking and Weber’s law,” Vision Res. 23, 495–505 (1983).
[CrossRef]

J. Nachmias, R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039–1042 (1974).
[CrossRef] [PubMed]

J. M. Foley, G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041–1053 (1981).
[CrossRef] [PubMed]

D. J. Lasley, T. E. Cohn “Why luminance discrimination may be better than detection,” Vision Res. 21, 273–278 (1981).
[CrossRef] [PubMed]

Other (11)

E. Switkes, K. K. De Valois, “Luminance and chromaticity interactions in spatial vision,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983).

R. M. Boynton, “Ten years of research with the minimally distinct border,” in Visual Psychophysics: Psychophysics and Physiology, J. C. Armington, J. Krauskopf, B. Wooten, eds. (Academic, New York, 1978).
[CrossRef]

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Also see Pelli,16 whose intrinsic uncertainty model suggests that a mask providing pedestals in a number of channels (noise) would not lead to facilitation, whereas a mask that gives a pedestal only for the detecting channels (e.g., a sinusoidal mask) will yield facilitation.

E. Switkes, K. K. De Valois have found that, under similar conditions, luminance masking, with identical mask and test frequencies, is greater when test and mask are at 90° or 270° relative phase than when at 0° or 180° (as determined primarily by the net contrast increment or decrement occurring when a mask and a test of the same spatial frequency are added in various relative phases).

R. L. De Valois, K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. V, E. C. Carterette, M. P. Friedman, eds. (Academic, New York, 1975).

K. K. De Valois, “Interactions among spatial frequency channels in the human visual system,” in Frontiers in Visual Science, S. J. Cool, E. L. Smith, eds. (Springer-Verlag, New York, 1978).
[CrossRef]

F. H. C. Marriott, “The two-colour threshold technique of Stiles,” in The Eye, Vol. 2A, H. Davson, ed. (Academic, New York, 1976).

N. Graham, “Spatial frequency channels in human vision: detecting edges without edge detectors,” in Visual Coding and Adaptability, C. S. Harris, ed. (Erlbaum, Hillsdale, N.J., 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representations of A, excitatory and B, inhibitory interactions consistent with color–luminance masking interactions observed using high-contrast masks. The strong masking of luminance by color is represented by the bold lines indicating either excitatory input of color before the luminance transducer (A) or inhibitory input subsequent to the nonlinearity (B). The weak interaction of luminance masks with chromatic tests is indicated by a thin line representing weak excitatory input before the nonlinearity.

Fig. 2
Fig. 2

Transducer function exhibiting an accelerating nonlinearity at low-stimulus levels and a compressive nonlinearity at high-stimulus levels. At low contrasts progressively smaller contrast increments are required to produce a given change in response. At high-contrast levels progressively larger contrast increments lead to given response increments.

Fig. 3
Fig. 3

Increment contrast thresholds plotted as a function of mask contrast for luminance (○) and color (▲) gratings for three observers. All data were collected using 2-c/deg sinusoidal gratings.

Fig. 4
Fig. 4

Normalized increment contrast thresholds [log (masked threshold/unmasked threshold)] plotted as a function of normalized mask contrast (mask contrast/threshold contrast). The data for luminance (○) and color (▲) masking at 2 c/deg are plotted for three observers.

Fig. 5
Fig. 5

Weber fractions [(ΔC/C) × 100%] plotted as a function of normalized mask contrast for luminance (○) and color (▲).

Fig. 6
Fig. 6

Spatial-frequency selectivity for luminance and chromatic masking. Log(normalized thresholds) are plotted as a function of the relative mask and test frequencies in octaves [log(mask frequency/test frequency) × 3.3]: ○, luminance facilitation (2-c/deg YBk test and a 0.34% contrast YBk mask at various spatial frequencies); ●, luminance masking (2-c/deg YBk test and a 8% contrast YBk mask at various spatial frequencies); Δ, color facilitation (2-c/deg RG test and a 0.75% contrast RG mask at various spatial frequencies); ▲, color masking (2-c/deg RG test and a 32% contrast RG mask at various spatial frequencies); ♦, facilitation of the detection of color by luminance (2-c/deg RG test and a 1.9% contrast YBk mask at various spatial frequencies).

Fig. 7
Fig. 7

Interactions between luminance (YBk) masks and chromatic (RG) test gratings (2 c/deg). Increment threshold contrasts plotted versus mask contrast for two phase conditions: ⋄, 0° relative phase corresponding to the green stripes of the test grating overlapping the yellow of the mask; ♦, 180° relative phase corresponding to the red of the test grating overlapping with the yellow of the mask.

Fig. 8
Fig. 8

Interactions between chromatic (RG) masks and luminance (YBk) test gratings (2 c/deg). Increment threshold contrasts plotted versus mask contrast for two phase conditions: □, 0° relative phase corresponding to the yellow stripes of the test grating overlapping with the green stripes of the mask; ■, 180° relative phase corresponding to the overlap of the yellow stripes of the test grating and the red stripes of the mask.

Fig. 9
Fig. 9

Spatial-frequency dependence of mask–test interactions. In all cases the mask and test had the same spatial frequency: triangles, squares, and diamonds are data for observer AB, and inverted triangles are data for subject MW. (a) ○, YBk (mask)/YBk (test); ∇, ⋄, YBk (mask)/RG (test), 0° relative phase; ▲, ♦, YBk (mask)/RG (test), 180° relative phase, (b) ▲, RG (mask)/RG (test); ∇, □, RG (mask)/YBk (test), 0° relative phase; ▼, ■, RG (mask)/YBk (test), 180° relative phase.

Fig. 10
Fig. 10

Contrast dependence of masking for 0.5-c/deg gratings, (a) Log(normalized contrast increment threshold) versus normalized mask contrast for ○, YBk (mask)/YBk (test); ▲, RG (mask)/RG (test). (b) Increment threshold contrast versus mask contrast for ⋄, YBk (mask)/RG (test), 0° relative phase; ♦, YBk (mask)/RG (test), 180° relative phase, (c) Increment threshold contrast versus mask contrast for □, RG (mask)/YBk (test) 0° relative phase; ■, Rg (mask)/YBk (test) 180° relative phase.

Fig. 11
Fig. 11

Comparison of log(normalized increment contrast threshold) versus normalized mask contrast for ●, same-on-same [YBk (mask)/YBk (test) or ●, RG (mask)/RG (test)]; ⋄, YBK (mask)/RG (test), and □, RG (mask/YBk (test) conditions. The data for the cross-masking conditions were averaged over the 0° and 180° relative mask-to-test phases.

Fig. 12
Fig. 12

Diagram illustrating luminance–color interactions consistent with the observed contrast dependence of cross masking. The excitatory model, A, requires that the mechanisms responsible for the accelerating and compressive nonlinearities occur at different levels of processing. In this model excitatory input from color contrast to luminance-detecting mechanisms would occur after the site of the accelerating nonlinearity. The inhibitory model, B, is similar to that in Fig. 1B in that color contrast inhibits luminance detection subsequent to the nonlinear transducer. In both schemes the effects of luminance contrast on color-contrast detection are indicated by attenuated (thin lines) excitatory input of luminance contrast before the nonlinearity. The mechanisms responsible for the effective accelerating and compressive nonlinearities are figuratively indicated by sections of a typical transducer response function. As discussed in the text, these mechanisms may be quite distinct from simple nonlinear transduction.

Metrics