Abstract

With reference to the treatment contained in a recent paper [ J. Opt. Soc. Am. A 3, 550 ( 1986)], the regions of validity of the energy method of Renard for obtaining the Goos–Hänchen lateral shift are discussed, and the proper procedure for implementation of the energy method, including the interaction power flow introduced by Yasumoto and Ōishi [ J. Appl. Phys. 54, 2170 ( 1983)], is described.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Artmann, “Berechnung der Sietenversetzung des total reflektierten Strahles,” Ann. Phys. 6, 87–102 (1948).
    [Crossref]
  2. R. H. Renard, “Total reflection: a new evaluation of the Goos–Hänchen shift,” J. Opt. Soc. Am. 54, 1190–1197 (1964).
    [Crossref]
  3. H. M. Lai, F. C. Cheng, W. K. Tang, “Goos–Hänchen effect around and off the critical angle,” J. Opt. Soc. Am. A 3, 550–557 (1986).
    [Crossref]
  4. K. Yasumoto, Y. Ōishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983).
    [Crossref]
  5. H. K. V. Lotsch, “Beam displacement at total reflection: the Goos–Hänchen effect,” Part I, Optik 32, 116–137 (1970);Part II, Optik 32, 189–204 (1970);Part III, Optik 32, 299–319 (1970);Part IV, Optik 32, 553–569 (1970).
  6. A. Puri, J. L. Birman, “Goos–Hänchen beam shift at total internal reflection with application to spatially dispersive media,” J. Opt. Soc. Am. A 3, 543–549 (1986).
    [Crossref]
  7. H. Kogelnik, H. P. Weber, “Rays, stored energy, and power flow in dielectric waveguides,” J. Opt. Soc. Am. 64, 174–185 (1974).
    [Crossref]
  8. L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).
  9. V. G. Fedoseyev, “Energy motion on total internal reflection of an electromagnetic wave packet,” J. Opt. Soc. Am. A 3, 826–829 (1986).
    [Crossref]

1986 (3)

1983 (1)

K. Yasumoto, Y. Ōishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983).
[Crossref]

1974 (1)

1970 (1)

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos–Hänchen effect,” Part I, Optik 32, 116–137 (1970);Part II, Optik 32, 189–204 (1970);Part III, Optik 32, 299–319 (1970);Part IV, Optik 32, 553–569 (1970).

1964 (1)

1948 (1)

K. Artmann, “Berechnung der Sietenversetzung des total reflektierten Strahles,” Ann. Phys. 6, 87–102 (1948).
[Crossref]

Artmann, K.

K. Artmann, “Berechnung der Sietenversetzung des total reflektierten Strahles,” Ann. Phys. 6, 87–102 (1948).
[Crossref]

Birman, J. L.

Brekhovskikh, L. M.

L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).

Cheng, F. C.

Fedoseyev, V. G.

Kogelnik, H.

Lai, H. M.

Lotsch, H. K. V.

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos–Hänchen effect,” Part I, Optik 32, 116–137 (1970);Part II, Optik 32, 189–204 (1970);Part III, Optik 32, 299–319 (1970);Part IV, Optik 32, 553–569 (1970).

Oishi, Y.

K. Yasumoto, Y. Ōishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983).
[Crossref]

Puri, A.

Renard, R. H.

Tang, W. K.

Weber, H. P.

Yasumoto, K.

K. Yasumoto, Y. Ōishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983).
[Crossref]

Ann. Phys. (1)

K. Artmann, “Berechnung der Sietenversetzung des total reflektierten Strahles,” Ann. Phys. 6, 87–102 (1948).
[Crossref]

J. Appl. Phys. (1)

K. Yasumoto, Y. Ōishi, “A new evaluation of the Goos–Hänchen shift and associated time delay,” J. Appl. Phys. 54, 2170–2176 (1983).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

Optik (1)

H. K. V. Lotsch, “Beam displacement at total reflection: the Goos–Hänchen effect,” Part I, Optik 32, 116–137 (1970);Part II, Optik 32, 189–204 (1970);Part III, Optik 32, 299–319 (1970);Part IV, Optik 32, 553–569 (1970).

Other (1)

L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p t = β k 2 / ω μ 0 α ( k 2 + α 2 ) , p ir = β α / ω μ 0 ( k 2 + α 2 ) ,
z s = 2 β / k α ;
z s = 2 β / k α q ,
q = β 2 ω 2 μ 0 ( 1 1 + 1 2 ) 1 ,

Metrics