S. Kawata, S. Minami, “The principle and applications of optical microscope tomography,” Acta Histochem. Cytochem. 19, 73–81 (1986).

[CrossRef]

G. W. Faris, R. L. Byer, “Quantitative optical tomographic imaging,” Opt. Lett. 11, 413–415 (1986).

[CrossRef]
[PubMed]

T. Abe, Y. Mitsunaga, H. Koga, “Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers,” J. Opt. Soc. Am. A 3, 133–138 (1986).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Constrained resolution enhancement in optical microscopic tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1753–1756 (1986).

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections: part 1—Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections: part 2—Applications and numerical results,” IEEE Trans. Med. Image. MI-1, 95–101 (1982).

[CrossRef]

K. C. Tam, “The use of multispectral imaging in limited-angle reconstruction,” IEEE Trans Nucl. Sci. NS-29, 512–515 (1982).

[CrossRef]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).

[CrossRef]
[PubMed]

G. N. Vishnyakov, G. G. Levin, “Optical tomography of phase objects,” Opt. Spectrosc. (USSR) 53, 434–437 (1982).

B. R. Myers, M. A. Levine, “Two-dimensional spectral line emission reconstruction,” Rev. Sci. Instrum. 49, 610–616 (1978).

[CrossRef]

R. W. Gerchberg, “Superresolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

B. R. Frieden, “Image enhancement and restoration,” in Picture Processing and Digital Filtering, T. S. Huang, ed. (Springer-Verlag, Berlin, 1975), Sees. 5.13.2 and 5.14.

R. W. Gerchberg, “Superresolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J., 1974), Chap. 23.

Y. Maruyama, K. Iwata, R. Nagata, “Measurement of the refractive index distribution in the interior of a solid object from multi-directional interferograms,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

[CrossRef]

P. A. Jansson, R. H. Hunt, E. K. Plyler, “Resolution enhancement of spectra,” J. Opt. Soc. Am. 60, 596–599 (1970).

[CrossRef]

P. A. Jansson, “Modern constrained nonlinear methods,” in Deconvolution, P. A. Jansson, ed. (Academic, New York, 1984), Chap. 4.

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

S. Kawata, S. Minami, “The principle and applications of optical microscope tomography,” Acta Histochem. Cytochem. 19, 73–81 (1986).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Constrained resolution enhancement in optical microscopic tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1753–1756 (1986).

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J., 1974), Chap. 23.

G. N. Vishnyakov, G. G. Levin, “Optical tomography of phase objects,” Opt. Spectrosc. (USSR) 53, 434–437 (1982).

B. R. Myers, M. A. Levine, “Two-dimensional spectral line emission reconstruction,” Rev. Sci. Instrum. 49, 610–616 (1978).

[CrossRef]

D. G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1973).

Y. Maruyama, K. Iwata, R. Nagata, “Measurement of the refractive index distribution in the interior of a solid object from multi-directional interferograms,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

S. Kawata, S. Minami, “The principle and applications of optical microscope tomography,” Acta Histochem. Cytochem. 19, 73–81 (1986).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Constrained resolution enhancement in optical microscopic tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1753–1756 (1986).

B. R. Myers, M. A. Levine, “Two-dimensional spectral line emission reconstruction,” Rev. Sci. Instrum. 49, 610–616 (1978).

[CrossRef]

Y. Maruyama, K. Iwata, R. Nagata, “Measurement of the refractive index distribution in the interior of a solid object from multi-directional interferograms,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Constrained resolution enhancement in optical microscopic tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1753–1756 (1986).

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections: part 2—Applications and numerical results,” IEEE Trans. Med. Image. MI-1, 95–101 (1982).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections: part 2—Applications and numerical results,” IEEE Trans. Med. Image. MI-1, 95–101 (1982).

[CrossRef]

K. C. Tam, “The use of multispectral imaging in limited-angle reconstruction,” IEEE Trans Nucl. Sci. NS-29, 512–515 (1982).

[CrossRef]

G. N. Vishnyakov, G. G. Levin, “Optical tomography of phase objects,” Opt. Spectrosc. (USSR) 53, 434–437 (1982).

D. C. Youla, H. Webb, “Image restoration by the method of convex projections: part 1—Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections: part 1—Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

S. Kawata, S. Minami, “The principle and applications of optical microscope tomography,” Acta Histochem. Cytochem. 19, 73–81 (1986).

[CrossRef]

K. C. Tam, “The use of multispectral imaging in limited-angle reconstruction,” IEEE Trans Nucl. Sci. NS-29, 512–515 (1982).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Constrained resolution enhancement in optical microscopic tomography,” IEEE Trans. Acoust. Speech Signal Process. ASSP-34, 1753–1756 (1986).

S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

D. C. Youla, H. Webb, “Image restoration by the method of convex projections: part 1—Theory,” IEEE Trans. Med. Imag. MI-1, 81–94 (1982).

[CrossRef]

M. I. Sezan, H. Stark, “Image restoration by the method of convex projections: part 2—Applications and numerical results,” IEEE Trans. Med. Image. MI-1, 95–101 (1982).

[CrossRef]

P. A. Jansson, R. H. Hunt, E. K. Plyler, “Resolution enhancement of spectra,” J. Opt. Soc. Am. 60, 596–599 (1970).

[CrossRef]

B. W. Stuck, “A new proposal for estimating the spatial concentration of certain types of air pollutants,” J. Opt. Soc. Am. 67, 668–678 (1977).

[CrossRef]

The relation between the least-squares (regularized) iteration and the Gerchberg–Papoulis method is described in J. B. Abbis, M. Defrise, C. De Mol, H. S. Dhadwal, “Regularized iterative and noniterative procedures for object restoration in the presence of noise: an error analysis,” J. Opt. Soc. Am. 73, 1470–1475 (1983),and S. Kawata, O. Nalcioglu, “Constrained iterative reconstruction by the conjugate gradient method,” IEEE Trans. Med. Imag. MI-4, 65–71 (1985).

[CrossRef]

T. Abe, Y. Mitsunaga, H. Koga, “Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers,” J. Opt. Soc. Am. A 3, 133–138 (1986).

[CrossRef]

S. Kawata, O. Nakamura, S. Minami, “Optical microscope tomography. I. Support constraint,” J. Opt. Soc. Am. A 4, 292–297 (1987).

[CrossRef]

Y. Maruyama, K. Iwata, R. Nagata, “Measurement of the refractive index distribution in the interior of a solid object from multi-directional interferograms,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

[CrossRef]

R. W. Gerchberg, “Superresolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).

[CrossRef]

G. N. Vishnyakov, G. G. Levin, “Optical tomography of phase objects,” Opt. Spectrosc. (USSR) 53, 434–437 (1982).

B. R. Myers, M. A. Levine, “Two-dimensional spectral line emission reconstruction,” Rev. Sci. Instrum. 49, 610–616 (1978).

[CrossRef]

B. R. Frieden, “Image enhancement and restoration,” in Picture Processing and Digital Filtering, T. S. Huang, ed. (Springer-Verlag, Berlin, 1975), Sees. 5.13.2 and 5.14.

P. A. Jansson, “Modern constrained nonlinear methods,” in Deconvolution, P. A. Jansson, ed. (Academic, New York, 1984), Chap. 4.

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J., 1974), Chap. 23.

D. G. Luenberger, Introduction to Linear and Nonlinear Programming (Addison-Wesley, Reading, Mass., 1973).