Abstract

Several aspects of electromagnetic wave propagation and scattering in isotropic chiral media (D = E + β∊▽ × E, B = μH + βμ▽× H) are explored here. All four field vectors, E, H, D, and B, satisfy the same governing differential equation, which reduces to the vector Helmholtz equation when β = 0. Vector and scalar potentials have been postulated. Conservation of energy and momentum are examined. Some properties, consequences, and computationally attractive forms of the applicable infinite-medium Green’s function have been explored. Finally, the mathematical expression of Huygens’s principle, as applicable to chiral media, has also been derived and employed to set up a scattering formalism and to establish the forward plane-wave-scattering amplitude theorems. Several of the results given that pertain to the field equations and Green’s dyadic are available for constitutive equations other than those mentioned above; these results, along with some others, have been given now for the above-mentioned constitutive equations. The derivations of Huygens’s principle and other developments described here have not been given earlier, to our knowledge, for any pertinent set of constitutive equations. With advances in polymer science, the formalisms developed here may be useful in the utilization of artificial chiral dielectrics at suboptical and microwave frequencies; application to vision research is also anticipated.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (123)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription