Abstract

The longitudinal chromatic aberration of the eye has been reported to decline with age. Using three different methods, we have measured the aberration in a group of young subjects (27–33 years old) and a group of older subjects (48–72 years old). In two of the methods we used a Badal optometer, either with or without an achromatizing lens incorporated, to examine the effect of wavelength on refractive error. In the third method we used a vernier-alignment apparatus to assess chromatic dispersion directly. None of the results of the experiments performed revealed any difference in aberration between the groups. Furthermore, a linear regression of aberration against age showed no relationship between these variables. We conclude that, for human adults, the magnitude of chromatic aberration is independent of age.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “The flawed retinal image. Part 1,” Optician 190(5020), 31–34 (1985); “The flawed retinal image. Part 2,” Optician 190(5022), 16–20 (1985).
  2. G. Wald, D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
    [Crossref] [PubMed]
  3. R. E. Bedford, G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [Crossref] [PubMed]
  4. M. Millodot, “The influence of age on the chromatic aberration of the eye,” A. Graefes Arch. Klin. Exp. Ophthalmol. 198, 235–243 (1976).
    [Crossref]
  5. M. Millodot, I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” A. Graefes Arch. Klin. Exp. Ophthalmol. 201, 159–167 (1976).
    [Crossref]
  6. C. Ware, “Human axial chromatic aberration found not to decline with age,” A. Graefes Arch. Klin. Exp. Ophthalmol. 218, 39–41 (1982).
    [Crossref]
  7. P. L. Pease, D. P. Cooper, “Longitudinal chromatic aberration and age,” Am. J. Optom. Physiol. Opt. 63, 106P. (1986).
  8. J. A. Mordi, W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864–869 (1985).
    [Crossref] [PubMed]
  9. R. A. Weale, The Aging Eye (Lewis, London, 1963), pp. 105, 144.
  10. J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
    [Crossref] [PubMed]
  11. B. Gilmartin, R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25, 1747–1753 (1985).
    [Crossref] [PubMed]
  12. R. J. Miller, “The chromatic aberration adjustment in laser optometry” Ophthalmic Physiol. Opt. 7, 491–494 (1987).
    [Crossref] [PubMed]
  13. A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. (to be published).
  14. A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
    [Crossref] [PubMed]
  15. A. Ivanoff, Les Aberrations de L’Oeil (Editions de la Revue D’Optique, Paris, 1953), pp. 26–47.
  16. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984), pp. 294–296.
  17. A. E. Shapiro, ed.,The Optical Papers of Isaac Newton: Vol. 1, The Optical Lectures, 1670–1672 (Cambridge U. Press, Cambridge, 1984), p. 581.
  18. S. J. Rog, “Longitudinal chromatic aberration in pseudophakia,” M.A. thesis (Department of Psychology, Concordia University, Montreal, Canada, 1987).
  19. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye, and its correction,” Vision Res. 26, 361–366 (1986).
    [Crossref]
  20. Y. LeGrand, Form and Space Vision, translated by M. Millodot, G. G. Heath (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.
  21. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision—Part II,” Br. J. Physiol. Opt. 20, 161–201 (1963).
    [PubMed]
  22. J. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
    [Crossref] [PubMed]
  23. D. A. Palmer, J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. 71, 780–782 (1981).
    [Crossref] [PubMed]
  24. M. Millodot, J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169–174 (1973).
    [PubMed]

1987 (2)

J. Pokorny, V. C. Smith, M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987).
[Crossref] [PubMed]

R. J. Miller, “The chromatic aberration adjustment in laser optometry” Ophthalmic Physiol. Opt. 7, 491–494 (1987).
[Crossref] [PubMed]

1986 (2)

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

P. L. Pease, D. P. Cooper, “Longitudinal chromatic aberration and age,” Am. J. Optom. Physiol. Opt. 63, 106P. (1986).

1985 (3)

J. A. Mordi, W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864–869 (1985).
[Crossref] [PubMed]

W. N. Charman, “The flawed retinal image. Part 1,” Optician 190(5020), 31–34 (1985); “The flawed retinal image. Part 2,” Optician 190(5022), 16–20 (1985).

B. Gilmartin, R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25, 1747–1753 (1985).
[Crossref] [PubMed]

1982 (3)

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

J. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[Crossref] [PubMed]

C. Ware, “Human axial chromatic aberration found not to decline with age,” A. Graefes Arch. Klin. Exp. Ophthalmol. 218, 39–41 (1982).
[Crossref]

1981 (1)

1976 (2)

M. Millodot, “The influence of age on the chromatic aberration of the eye,” A. Graefes Arch. Klin. Exp. Ophthalmol. 198, 235–243 (1976).
[Crossref]

M. Millodot, I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” A. Graefes Arch. Klin. Exp. Ophthalmol. 201, 159–167 (1976).
[Crossref]

1973 (1)

M. Millodot, J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

1963 (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision—Part II,” Br. J. Physiol. Opt. 20, 161–201 (1963).
[PubMed]

1957 (1)

1947 (1)

Adrian, W. K.

J. A. Mordi, W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864–869 (1985).
[Crossref] [PubMed]

Bedford, R. E.

Bennett, A. G.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984), pp. 294–296.

Bradley, A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. (to be published).

Charman, W. N.

W. N. Charman, “The flawed retinal image. Part 1,” Optician 190(5020), 31–34 (1985); “The flawed retinal image. Part 2,” Optician 190(5022), 16–20 (1985).

Cooper, D. P.

P. L. Pease, D. P. Cooper, “Longitudinal chromatic aberration and age,” Am. J. Optom. Physiol. Opt. 63, 106P. (1986).

DeValois, K. K.

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. (to be published).

Gilmartin, B.

B. Gilmartin, R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25, 1747–1753 (1985).
[Crossref] [PubMed]

Griffin, D. R.

Hogan, R. E.

B. Gilmartin, R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25, 1747–1753 (1985).
[Crossref] [PubMed]

Howarth, P. A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

Ivanoff, A.

A. Ivanoff, Les Aberrations de L’Oeil (Editions de la Revue D’Optique, Paris, 1953), pp. 26–47.

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision—Part II,” Br. J. Physiol. Opt. 20, 161–201 (1963).
[PubMed]

Katz, M.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

LeGrand, Y.

Y. LeGrand, Form and Space Vision, translated by M. Millodot, G. G. Heath (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

Lewis, A. L.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Lutze, M.

Mandelman, T.

J. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[Crossref] [PubMed]

Miller, R. J.

R. J. Miller, “The chromatic aberration adjustment in laser optometry” Ophthalmic Physiol. Opt. 7, 491–494 (1987).
[Crossref] [PubMed]

Millodot, M.

M. Millodot, “The influence of age on the chromatic aberration of the eye,” A. Graefes Arch. Klin. Exp. Ophthalmol. 198, 235–243 (1976).
[Crossref]

M. Millodot, I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” A. Graefes Arch. Klin. Exp. Ophthalmol. 201, 159–167 (1976).
[Crossref]

M. Millodot, J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

Mordi, J. A.

J. A. Mordi, W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864–869 (1985).
[Crossref] [PubMed]

Newton, I. A.

M. Millodot, I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” A. Graefes Arch. Klin. Exp. Ophthalmol. 201, 159–167 (1976).
[Crossref]

Oehrlein, C.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Palmer, D. A.

Pease, P. L.

P. L. Pease, D. P. Cooper, “Longitudinal chromatic aberration and age,” Am. J. Optom. Physiol. Opt. 63, 106P. (1986).

Pokorny, J.

Rabbetts, R. B.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984), pp. 294–296.

Rog, S. J.

S. J. Rog, “Longitudinal chromatic aberration in pseudophakia,” M.A. thesis (Department of Psychology, Concordia University, Montreal, Canada, 1987).

Sivak, J.

J. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[Crossref] [PubMed]

D. A. Palmer, J. Sivak, “Crystalline lens dispersion,” J. Opt. Soc. Am. 71, 780–782 (1981).
[Crossref] [PubMed]

M. Millodot, J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

Smith, V. C.

Switkes, E.

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. (to be published).

Wald, G.

Ware, C.

C. Ware, “Human axial chromatic aberration found not to decline with age,” A. Graefes Arch. Klin. Exp. Ophthalmol. 218, 39–41 (1982).
[Crossref]

Weale, R. A.

R. A. Weale, The Aging Eye (Lewis, London, 1963), pp. 105, 144.

Wyszecki, G.

A. Graefes Arch. Klin. Exp. Ophthalmol. (3)

M. Millodot, “The influence of age on the chromatic aberration of the eye,” A. Graefes Arch. Klin. Exp. Ophthalmol. 198, 235–243 (1976).
[Crossref]

M. Millodot, I. A. Newton, “A possible change of refractive index with age and its relevance to chromatic aberration,” A. Graefes Arch. Klin. Exp. Ophthalmol. 201, 159–167 (1976).
[Crossref]

C. Ware, “Human axial chromatic aberration found not to decline with age,” A. Graefes Arch. Klin. Exp. Ophthalmol. 218, 39–41 (1982).
[Crossref]

Am. J. Optom. Physiol. Opt. (3)

P. L. Pease, D. P. Cooper, “Longitudinal chromatic aberration and age,” Am. J. Optom. Physiol. Opt. 63, 106P. (1986).

J. A. Mordi, W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864–869 (1985).
[Crossref] [PubMed]

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Appl. Opt. (1)

Br. J. Physiol. Opt. (2)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision—Part II,” Br. J. Physiol. Opt. 20, 161–201 (1963).
[PubMed]

M. Millodot, J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

J. Opt. Soc. Am. (3)

Ophthalmic Physiol. Opt. (1)

R. J. Miller, “The chromatic aberration adjustment in laser optometry” Ophthalmic Physiol. Opt. 7, 491–494 (1987).
[Crossref] [PubMed]

Optician (1)

W. N. Charman, “The flawed retinal image. Part 1,” Optician 190(5020), 31–34 (1985); “The flawed retinal image. Part 2,” Optician 190(5022), 16–20 (1985).

Vision Res. (3)

J. Sivak, T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997–1003 (1982).
[Crossref] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the eye, and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

B. Gilmartin, R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25, 1747–1753 (1985).
[Crossref] [PubMed]

Other (7)

R. A. Weale, The Aging Eye (Lewis, London, 1963), pp. 105, 144.

Y. LeGrand, Form and Space Vision, translated by M. Millodot, G. G. Heath (Indiana U. Press, Bloomington, Ind., 1967), pp. 5–23.

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. (to be published).

A. Ivanoff, Les Aberrations de L’Oeil (Editions de la Revue D’Optique, Paris, 1953), pp. 26–47.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth, London, 1984), pp. 294–296.

A. E. Shapiro, ed.,The Optical Papers of Isaac Newton: Vol. 1, The Optical Lectures, 1670–1672 (Cambridge U. Press, Cambridge, 1984), p. 581.

S. J. Rog, “Longitudinal chromatic aberration in pseudophakia,” M.A. thesis (Department of Psychology, Concordia University, Montreal, Canada, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Results of experiment 1. The change in refractive error, in diopters, is plotted as a function of wavelength, in nanometers. (a) Data from the four young subjects: AB (age 32, filled squares), PH (age 33, open squares), DS (age 33, filled circles), and XX (age 27, open circles). (b) Data from the five older phakic subjects: HH (age 72, filled circles), SH (age 48, open circles), CS (age 58, filled squares), RR (age 52, filled triangles), and MA (age 68, crosses). Also shown in the lower graph are the data from the two eyes with intraocular lenses: GH (age 64, open squares) and MA (age 68, open triangles). For comparison, the shaded area on each graph shows data from the 20 young subjects reported by Howarth and Bradley19; the shading indicates ±2 SD from the mean aberration at each wavelength tested. By moving individual data sets vertically, data from each subject have been fitted into these normal limits.

Fig. 2
Fig. 2

Results of experiment 2. The change in refractive error is plotted as a function of wavelength; in this experiment subjects used an achromatizing lens to correct their chromatic aberration. (a) Data from the four young subjects. (b) Data from the five older subjects and the two pseudophakic eyes. Symbols are as in Fig. 1. Again, for comparison, the shaded area on each graph shows normal data (±2 SD) from the mean aberration of the 20 young subjects, corrected with the same achromatizing lens, reported by Howarth and Bradley.19

Fig. 3
Fig. 3

Results of experiment 3. The amount of offset needed, in degrees, to align a 466-nm vernier line and a 615-nm vernier line when both are viewed through a decentered artificial pupil. (a) Data from the four young subjects. (b) Data from the five older subjects and the two pseudophakic eyes. Symbols are as in Fig. 1.

Fig. 4
Fig. 4

The ocular chromatic aberration of the phakic eyes, in diopters, is plotted as a function of age. Data from experiments 1, 2, and 3 are plotted as filled circles, filled squares, and open circles, respectively, and straight lines have been fitted to the data by linear regression. As explained in the text, the three data sets reflect the same amount of underlying aberration, although the dioptric values differ because of the different conditions of the three experiments.

Metrics