Abstract

Equiluminance ratios for red/green, red/blue and green/blue sine-wave gratings were determined by using a minimum-motion heterochromatic matching technique that permitted reliable settings at temporal frequencies as low as 0.5 Hz. The red/green equiluminance ratio was influenced by temporal but not spatial frequency, the green/blue ratio was influenced by spatial but not temporal frequency, and the red/blue ratio was influenced by both. After bleaching of the blue-sensitive cones, there was no change in equiluminance ratios, indicating no contribution of the blue-sensitive cones to the luminance channel even at low temporal and spatial frequencies. The inhomogeneity of yellow pigmentation within the macular region was identified as the source of the spatial-frequency effect on the blue/green ratio.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. 199, 533–547 (1968).
    [PubMed]
  2. F. M. de Monasterio, P. Gouras, “Functional properties of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
    [PubMed]
  3. F. M. de Monasterio, “Properties of concentrically organized X and Y ganglion cells of macaque retina,”J. Neurophysiol. 41, 1394–1417 (1978).
    [PubMed]
  4. E. Zrenner, P. Gouras, “Characteristics of the blue-sensitive cone mechanisms in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
    [Crossref]
  5. E. Zrenner, Neurophysiological Aspects of Color Vision in Primates (Springer-Verlag, Berlin, 1983).
    [Crossref]
  6. P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
    [Crossref] [PubMed]
  7. C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r-g X-cell channel,” Vision Res. 25, 33–38 (1985).
    [Crossref] [PubMed]
  8. A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–123 (1980).
    [Crossref] [PubMed]
  9. B. W. Tansley, R. M. Boynton, “Chromatic border preception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
    [Crossref]
  10. G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
    [PubMed]
  11. D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,”J. Opt. Soc. Am. 64, 983–990 (1974).
    [Crossref]
  12. J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
    [Crossref] [PubMed]
  13. B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
    [Crossref] [PubMed]
  14. S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.
  15. P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
    [PubMed]
  16. E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. 250, 347–366 (1975).
    [PubMed]
  17. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
    [Crossref] [PubMed]
  18. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4155–4157 (1981).
    [Crossref]
  19. D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
    [Crossref] [PubMed]
  20. D. R. Williams, R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosiac,” Science 221, 385–387 (1983).
    [Crossref] [PubMed]
  21. D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
    [Crossref] [PubMed]
  22. W. S. Stiles, G. Wyszecki, “Colour-matching data and the spectral absorption curves of visual pigments,” Vision Res. 14, 195–207 (1974).
    [Crossref] [PubMed]
  23. G. Wagner, R. M. Boynton, “A comparison of four methods of heterochromatic photometry,”J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [Crossref] [PubMed]
  24. G. A. Fry, “Adaptation and heterochromatic brightness matching,” Invest. Ophthalmol. Vis. Sci. Suppl. 21, 134 (1980).
  25. T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,”J. Neurophysiol. 29, 1115–1156 (1966).
    [PubMed]
  26. K. T. Mullen, “The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings,”J. Physiol. 359, 381–400 (1985).
  27. P. Cavanagh, Y. Leclerc, “Shadow constraints,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 282 (1985).
  28. P. Cavanagh, “Subjective contours signalled by luminance, vetoed by motion or depth,” Bull. Psychon. Soc. 23, 273 (1985).
  29. P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).
  30. R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–235 (1959).
    [PubMed]
  31. A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
    [Crossref] [PubMed]
  32. P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
    [Crossref]

1987 (1)

P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).

1986 (1)

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

1985 (4)

K. T. Mullen, “The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings,”J. Physiol. 359, 381–400 (1985).

P. Cavanagh, Y. Leclerc, “Shadow constraints,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 282 (1985).

P. Cavanagh, “Subjective contours signalled by luminance, vetoed by motion or depth,” Bull. Psychon. Soc. 23, 273 (1985).

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r-g X-cell channel,” Vision Res. 25, 33–38 (1985).
[Crossref] [PubMed]

1984 (2)

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

1983 (4)

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[Crossref] [PubMed]

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[Crossref] [PubMed]

D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
[Crossref] [PubMed]

D. R. Williams, R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosiac,” Science 221, 385–387 (1983).
[Crossref] [PubMed]

1982 (1)

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

1981 (3)

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4155–4157 (1981).
[Crossref]

E. Zrenner, P. Gouras, “Characteristics of the blue-sensitive cone mechanisms in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[Crossref]

1980 (3)

A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–123 (1980).
[Crossref] [PubMed]

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[Crossref] [PubMed]

G. A. Fry, “Adaptation and heterochromatic brightness matching,” Invest. Ophthalmol. Vis. Sci. Suppl. 21, 134 (1980).

1978 (2)

B. W. Tansley, R. M. Boynton, “Chromatic border preception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[Crossref]

F. M. de Monasterio, “Properties of concentrically organized X and Y ganglion cells of macaque retina,”J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

1975 (2)

F. M. de Monasterio, P. Gouras, “Functional properties of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. 250, 347–366 (1975).
[PubMed]

1974 (2)

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,”J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

W. S. Stiles, G. Wyszecki, “Colour-matching data and the spectral absorption curves of visual pigments,” Vision Res. 14, 195–207 (1974).
[Crossref] [PubMed]

1972 (1)

G. Wagner, R. M. Boynton, “A comparison of four methods of heterochromatic photometry,”J. Opt. Soc. Am. 62, 1508–1515 (1972).
[Crossref] [PubMed]

1968 (1)

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. 199, 533–547 (1968).
[PubMed]

1966 (2)

G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
[PubMed]

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,”J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

1959 (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–235 (1959).
[PubMed]

Anstis, S.

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

Anstis, S. M.

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

Boynton, R. M.

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[Crossref] [PubMed]

B. W. Tansley, R. M. Boynton, “Chromatic border preception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[Crossref]

G. Wagner, R. M. Boynton, “A comparison of four methods of heterochromatic photometry,”J. Opt. Soc. Am. 62, 1508–1515 (1972).
[Crossref] [PubMed]

Bradley, A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

Brindley, G. S.

G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
[PubMed]

Cavanagh, P.

P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).

P. Cavanagh, “Subjective contours signalled by luminance, vetoed by motion or depth,” Bull. Psychon. Soc. 23, 273 (1985).

P. Cavanagh, Y. Leclerc, “Shadow constraints,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 282 (1985).

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

Colby, C. L.

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[Crossref] [PubMed]

Collier, R. J.

D. R. Williams, R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosiac,” Science 221, 385–387 (1983).
[Crossref] [PubMed]

Crone, R. A.

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–235 (1959).
[PubMed]

de Monasterio, F. M.

F. M. de Monasterio, “Properties of concentrically organized X and Y ganglion cells of macaque retina,”J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

Drum, B.

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[Crossref] [PubMed]

DuCroz, J. J.

G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
[PubMed]

Eisner, A.

A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–123 (1980).
[Crossref] [PubMed]

Fry, G. A.

G. A. Fry, “Adaptation and heterochromatic brightness matching,” Invest. Ophthalmol. Vis. Sci. Suppl. 21, 134 (1980).

Gouras, P.

E. Zrenner, P. Gouras, “Characteristics of the blue-sensitive cone mechanisms in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[Crossref]

F. M. de Monasterio, P. Gouras, “Functional properties of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. 199, 533–547 (1968).
[PubMed]

Hayhoe, M.

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

Howarth, P. A.

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

Hubel, D. H.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,”J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r-g X-cell channel,” Vision Res. 25, 33–38 (1985).
[Crossref] [PubMed]

Katz, M.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Kelly, D. H.

D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
[Crossref] [PubMed]

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,”J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

Klein, S. A.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

Leclerc, Y.

P. Cavanagh, Y. Leclerc, “Shadow constraints,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 282 (1985).

Levinson, E.

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. 250, 347–366 (1975).
[PubMed]

Lewis, A. L.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

MacLeod, D. I. A.

P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–123 (1980).
[Crossref] [PubMed]

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r-g X-cell channel,” Vision Res. 25, 33–38 (1985).
[Crossref] [PubMed]

Mather, G.

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings,”J. Physiol. 359, 381–400 (1985).

Oehrlein, C.

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Powell, I.

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4155–4157 (1981).
[Crossref]

Rushton, W. A. H.

G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
[PubMed]

Schiller, P. H.

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[Crossref] [PubMed]

Sekuler, R.

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. 250, 347–366 (1975).
[PubMed]

Shioiri, S.

P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).

Stiles, W. S.

W. S. Stiles, G. Wyszecki, “Colour-matching data and the spectral absorption curves of visual pigments,” Vision Res. 14, 195–207 (1974).
[Crossref] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

Tansley, B. W.

B. W. Tansley, R. M. Boynton, “Chromatic border preception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[Crossref]

Wagner, G.

G. Wagner, R. M. Boynton, “A comparison of four methods of heterochromatic photometry,”J. Opt. Soc. Am. 62, 1508–1515 (1972).
[Crossref] [PubMed]

Wiesel, T. N.

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,”J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

Williams, D. R.

D. R. Williams, R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosiac,” Science 221, 385–387 (1983).
[Crossref] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

Wisowaty, J. J.

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[Crossref] [PubMed]

Wyszecki, G.

W. S. Stiles, G. Wyszecki, “Colour-matching data and the spectral absorption curves of visual pigments,” Vision Res. 14, 195–207 (1974).
[Crossref] [PubMed]

Zrenner, E.

E. Zrenner, P. Gouras, “Characteristics of the blue-sensitive cone mechanisms in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[Crossref]

E. Zrenner, Neurophysiological Aspects of Color Vision in Primates (Springer-Verlag, Berlin, 1983).
[Crossref]

Am. J. Ophthalmol. (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–235 (1959).
[PubMed]

Am. J. Optom. Physiol. Opt. (1)

A. L. Lewis, M. Katz, C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909–911 (1982).
[Crossref] [PubMed]

Appl. Opt. (1)

I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4155–4157 (1981).
[Crossref]

Bull. Psychon. Soc. (1)

P. Cavanagh, “Subjective contours signalled by luminance, vetoed by motion or depth,” Bull. Psychon. Soc. 23, 273 (1985).

Invest. Ophthalmol. Vis. Sci. (1)

P. Cavanagh, S. Anstis, G. Mather, “Screening for color blindness using optokinetic nystagmus,” Invest. Ophthalmol. Vis. Sci. 25, 463–466 (1984).
[PubMed]

Invest. Ophthalmol. Vis. Sci. Suppl. (3)

P. Cavanagh, S. Shioiri, D. I. A. MacLeod, “Is the achromatic form pathway based on brightness or luminance?” Invest. Ophthalmol. Vis. Sci. Suppl. 28, 362 (1987).

G. A. Fry, “Adaptation and heterochromatic brightness matching,” Invest. Ophthalmol. Vis. Sci. Suppl. 21, 134 (1980).

P. Cavanagh, Y. Leclerc, “Shadow constraints,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 282 (1985).

J. Neurophysiol. (2)

T. N. Wiesel, D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,”J. Neurophysiol. 29, 1115–1156 (1966).
[PubMed]

F. M. de Monasterio, “Properties of concentrically organized X and Y ganglion cells of macaque retina,”J. Neurophysiol. 41, 1394–1417 (1978).
[PubMed]

J. Opt. Soc. Am. (4)

A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,”J. Opt. Soc. Am. 70, 121–123 (1980).
[Crossref] [PubMed]

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,”J. Opt. Soc. Am. 64, 983–990 (1974).
[Crossref]

G. Wagner, R. M. Boynton, “A comparison of four methods of heterochromatic photometry,”J. Opt. Soc. Am. 62, 1508–1515 (1972).
[Crossref] [PubMed]

D. H. Kelly, “Spatiotemporal variation of chromatic and achromatic contrast thresholds,”J. Opt. Soc. Am. 73, 742–750 (1983).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, S. A. Klein, “Opponent-movement mechanisms in human vision,” J. Opt. Soc. Am. A 1, 876–884 (1984).
[Crossref] [PubMed]

J. Physiol. (5)

G. S. Brindley, J. J. DuCroz, W. A. H. Rushton, “The flicker fusion frequency of the blue sensitive mechanism of colour vision,”J. Physiol. 183, 497–500 (1966).
[PubMed]

E. Levinson, R. Sekuler, “The independence of channels in human vision selective for direction of movement,”J. Physiol. 250, 347–366 (1975).
[PubMed]

P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,”J. Physiol. 199, 533–547 (1968).
[PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of the rhesus monkey retina,”J. Physiol. 251, 167–195 (1975).
[PubMed]

K. T. Mullen, “The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings,”J. Physiol. 359, 381–400 (1985).

Science (1)

D. R. Williams, R. J. Collier, “Consequences of spatial sampling by a human photoreceptor mosiac,” Science 221, 385–387 (1983).
[Crossref] [PubMed]

Vision Res. (9)

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[Crossref] [PubMed]

W. S. Stiles, G. Wyszecki, “Colour-matching data and the spectral absorption curves of visual pigments,” Vision Res. 14, 195–207 (1974).
[Crossref] [PubMed]

P. A. Howarth, A. Bradley, “The longitudinal chromatic aberration of the human eye and its correction,” Vision Res. 26, 361–366 (1986).
[Crossref]

E. Zrenner, P. Gouras, “Characteristics of the blue-sensitive cone mechanisms in primate retinal ganglion cells,” Vision Res. 21, 1605–1609 (1981).
[Crossref]

B. W. Tansley, R. M. Boynton, “Chromatic border preception: the role of red- and green-sensitive cones,” Vision Res. 18, 683–697 (1978).
[Crossref]

P. H. Schiller, C. L. Colby, “The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast,” Vision Res. 23, 1631–1641 (1983).
[Crossref] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The spatiotemporal properties of the r-g X-cell channel,” Vision Res. 25, 33–38 (1985).
[Crossref] [PubMed]

J. J. Wisowaty, R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895–909 (1980).
[Crossref] [PubMed]

B. Drum, “Short-wavelength cones contribute to achromatic sensitivity,” Vision Res. 23, 1433–1439 (1983).
[Crossref] [PubMed]

Other (2)

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

E. Zrenner, Neurophysiological Aspects of Color Vision in Primates (Springer-Verlag, Berlin, 1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Four colored gratings are exposed in a repetitive sequence, at times T1–T4, on the screen of a computer-controlled television. Positions of the gratings were superimposed, not displaced vertically as illustrated. Each grating was displaced sideways by one-quarter cycle (half a bar width) from its predecessor. The direction of the apparent motion, shown by the arrows, depended on the luminance. (a) When the red bars were darker than the green bars, the red bars in the grating at time T1 (or T3) appeared to jump leftward to the dark yellow bars in the grating at time T2 (or T4). (b) Conversely, when the red bars were lighter than the green bars, the red bars appeared to jump rightward to the light yellow bars. The luminance contrast of the light and dark yellow bars was fixed, typically at 10%. The luminance contrast of the red and green bars was initially unknown but under the control of the observer. (c) The temporal waveforms of the color and luminance gratings in the four-stroke cycle. (d) Equivalent sinusoidal waveforms for the color and luminance gratings.

Fig. 2
Fig. 2

The superposition of a counterphasing color grating and a counterphasing luminance grating differing by 90° in spatial and temporal phase is shown decomposed into its various components. In (a) the red variation has a greater amplitude than the green, in (b) it has an equal amplitude, and in (c) it has a smaller amplitude. The color grating is shown as the individual red and green waveforms and then decomposed into separate chrominanice and luminiance waveforms. The individual red and green waveforms have 100% contrast: their minimum value is 0 cd/m2. The horizontal scale in all panels is space, and the arrows indicate changes over time. The final column depicts the resulting motion stimulus.

Fig. 3
Fig. 3

The range of visible motion in the stimulus as a function of the luminance mismatch between the two colors (red and green here) depends on whether the amplitude of the luminance grating, m, is (a) high, (b) medium, or (c) low. When its amplitude is large [say, 15% as in (a)], motion can be seen over a large range surrounding equiluminance, thus aiding the observer make the setting if the initial value is far removed from equiluminance; however, there is, as well, a large, central range of ambiguous or no motion that makes the exact setting difficult. When its amplitude is small [say, 5% as in (c)], the exact equiluminance point is more easily located; however, it is difficult to know the appropriate direction of adjustments to make to approach equiluminance if the initial value falls in the large flanking flicker areas.

Fig. 4
Fig. 4

The amplitude of the green component required to null the stimulus motion when combined with a 15-cd/m2 red component, as a function of spatial and temporal frequency for observer PC. The vertical bars show the typical (±1) standard error. Note that to preserve the direction of a dropoff in blue efficiency with spatial frequency in later graphs, the luminance axis has been inverted here and in all following graphs except Fig. 9.

Fig. 5
Fig. 5

The amplitude of the green component required to null the stimulus motion when combined with a 15-cd/m2 red component, as a function of spatial and temporal frequency for observer SMA. The vertical bars show the typical (±1) standard error.

Fig. 6
Fig. 6

The amplitude of the blue component required to null the stimulus motion when combined with a 15-cd/m2 red component, as a function of spatial and temporal frequency for observer PC. Data for minimum flicker settings at 7.5 Hz are also shown. The vertical bars show the typical (±1) standard error.

Fig. 7
Fig. 7

The amplitude of the blue component required to null the stimulus motion when combined with a 15-cd/m2 red component, as a function of spatial and temporal frequency for observer SMA. Data for minimum flicker settings at 7.5 Hz arc also shown. The vertical bars show the typical (±1) standard error.

Fig. 8
Fig. 8

The amplitude of the blue component required to null the stimulus motion when combined with an 18-cd/m2 green component, as a function of spatial and temporal frequency for observer PC. The vertical bars show the typical (±1) standard error.

Fig. 9
Fig. 9

The amplitude of the blue component required to null the stimulus motion when combined with a 14-cd/m2 green component, as a function of spatial and temporal frequency for observer PC. The vertical bars show the typical (±1) standard error.

Fig. 10
Fig. 10

The effect of bleaching the B cones and of a smaller (1°) field on the amplitude of the green component required to null the stimulus motion when combined with a 16-cd/m2 blue component, as a function of spatial frequency for observer PC. Note that the luminance axis is not inverted in this graph. The vertical bars show the typical (±1) standard error.

Fig. 11
Fig. 11

The effect of bleaching the B cones and of a smaller (1°) field on the amplitude of the blue component required to null the stimulus motion when combined with a 15-cd/m2 green component, as a function of spatial frequency for observer DM. The vertical bars show the typical (±1) standard error.

Fig. 12
Fig. 12

The effect of bleaching the parafoveal B cones (2° to 6° eccentricity) on the amplitude of the green component required to null the stimulus motion when combined with a 10-cd/m2 blue component, as a function of spatial frequency for observer PC. Note that the luminance axis is not inverted in this graph. The vertical bars show the typical (±1) standard error.

Fig. 13
Fig. 13

The effect of bleaching the parafoveal B cones (2° to 6° eccentricity) on the amplitude of the green component required to null the stimulus motion when combined with a 10-cd/m2 blue component, as a function of spatial frequency for observer DM. Note that the luminance axis is not inverted in this graph. The vertical bars show the typical (±1) standard error.

Tables (1)

Tables Icon

Table 1 Transitivity of the Equiluminance Measures in Experiment 1 for Observers PC and SMAa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin ( 2 π f S x ) sin ( 2 π f T t ) ,
sin ( 2 π f S x ) sin ( 2 π f T t ) + cos ( 2 π f S x ) cos ( 2 π f T t ) = cos [ 2 π ( f S x + f T t ) ] ,
sin ( 2 π f S x ) sin ( 2 π f T t ) - cos ( 2 π f S x ) cos ( 2 π f T t ) = cos [ 2 π ( f S x - f T t ) ] .
R ( x , t ) = 0.5 L R { [ 1 + m sin ( 2 π f S x ) sin ( 2 π f T t ) ] + [ 1 + cos ( 2 π f S x ) cos ( 2 π f T t ) ] } ,
G ( x , t ) = 0.5 L G { [ 1 + m sin ( 2 π f S x ) sin ( 2 π f T t ) ] + [ 1 - cos ( 2 π f S x ) cos ( 2 π f T t ) ] } ,
L ( x , t ) = R ( x , t ) + G ( x , t ) = L R + L G + 0.5 [ m ( L R + L G ) + L R - L G ] cos [ 2 π ( f S x - f T t ) ] + 0.5 [ m ( L R + L G ) + L G - L R ] cos [ 2 π ( f S x + f T t ) ] .
L R - L G = m ( L R + L G ) ,

Metrics