Abstract

Constant hue loci for unique red, yellow, green, and blue and the loci of four binary balanced hues (e.g., equally reddish and yellowish) were measured at 10, 100, and 1000 Td for two observers. Wavelengths of the unique hues were not invariant from 10 to 1000 Td. In Judd’s modification of the 1931 CIE chromaticity diagram, only the unique yellow loci at 10 and 1000Td plotted as straight lines. The other constant hue loci were curved, and all the constant hue loci changed with retinal illuminance.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London Ser. A 83, 120–127 (1910).
  2. S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. Subcommittee on the Spacing of the Munsell Colors,”J. Opt. Soc. Am. 33, 385–418 (1943).
    [Crossref]
  3. D. L. MacAdam, “Loci of constant hue and brightness determined with various surrounding colors,”J. Opt. Soc. Am. 40, 589–595 (1950).
    [Crossref]
  4. M. H. Wilson, R. W. Brocklebank, “Complementary hues of after-images,”J. Opt. Soc. Am. 45, 293–299 (1955).
    [Crossref] [PubMed]
  5. A. R. Robertson, “A new determination of lines of constant hue,” in AIC Proceedings Color 69 (Musterschnidt-Verlag, Göttingen, Federal Republic of Germany, 1970), pp. 395–402.
  6. S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [Crossref] [PubMed]
  7. W. Kurtenbach, C. E. Sternheim, L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365–372 (1984).
    [Crossref] [PubMed]
  8. E. Schrödinger, “Outline of a theory of color measurement for daylight vision,” Ann Phys. 63, 397–447, 481–520 (1920) [translated by D. L. MacAdam, in Sources of Color Science (MIT Press, Cambridge, Mass., 1970)].
    [Crossref]
  9. G. A. Fry, “A photo-receptor mechanism for the modulation theory of color vision,”J. Opt. Soc. Am. 35, 114–135 (1945).
    [Crossref]
  10. L. G. Glasser, A. H. McKinney, C. D. Reilly, P. D. Schnelle, “Cube-root color coordinate system,”J. Opt. Soc. Am. 48, 736–740 (1958).
    [Crossref]
  11. G. T. Yonemura, “Opponent-color-theory treatment of the CIE 1960 (u, v) diagram: chromaticness difference and constant-hue loci,”J. Opt. Soc. Am. 60, 1407–1409 (1970).
    [Crossref] [PubMed]
  12. E. J. Muth, C. G. Persels, “Constant-brightness surfaces generated by several color-difference formulas,”J. Opt. Soc. Am. 61, 1152–1154 (1971).
    [Crossref] [PubMed]
  13. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd ed. (Wiley, New York, 1982), p. 672.
  14. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref] [PubMed]
  15. R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,”J. Opt. Soc. Am. 55, 78–86 (1965).
    [Crossref]
  16. D. B. Judd, Secr. Rep. “Colorimetry and artificial daylight,” in Proceedings 12th Session CIE, Stockholm (Commission Internationale de l’Eclairage, Paris, 1959), Vol. I, p. 11.
  17. J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
    [Crossref]
  18. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [Crossref]
  19. F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
    [Crossref]
  20. F. L. Dimmick, M. R. Hubbard, “The spectral components of psychologically unique red,” Am. J. Psychol. 52, 348–353 (1939).
    [Crossref]
  21. L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–203 (1951).
    [Crossref] [PubMed]
  22. M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
    [Crossref] [PubMed]
  23. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
    [Crossref] [PubMed]
  24. J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
    [Crossref] [PubMed]
  25. C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
    [Crossref]
  26. J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
    [Crossref] [PubMed]
  27. A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
    [Crossref] [PubMed]
  28. Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color process,” Vision Res. 24, 1897–1904 (1984).
    [Crossref]
  29. L. M. Hurvich, D. Jameson, “Some quantitative aspects of opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision,”J. Opt. Soc. Am. 45, 602–616 (1955).
    [Crossref] [PubMed]
  30. J. J. Vos, “Are unique and invariant hues coupled?” Vision Res. 26, 337–342 (1986).
    [Crossref] [PubMed]
  31. The curves are calculated by the least-squares fitting of the third polynomial for both x and y as a function of pe.
  32. The CIE 1976 (u′, v′) tables are available from M. Ayama or P. K. Kaiser.
  33. C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Visions Res. 22, 1353–1362 (1982).
    [Crossref]
  34. J. Larimer, “Red/green opponent colors equilibria measured on chromatic adapting fields: evidence for gain changes and restoring forces,” Vision Res. 21, 501–512 (1981).
    [Crossref] [PubMed]
  35. W. Richards, “Differences among color normals: classes I and II,”J. Opt. Soc. Am. 57, 1047–1055 (1967).
    [Crossref] [PubMed]
  36. D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
    [Crossref]
  37. M. Ikeda, M. Ayama, “Nonlinear nature of the yellow chromatic valence,” in Colour Vision, J. D. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 345–351.
  38. M. Ikeda, M. Ayama, “Additivity of opponent chromatic valence,” Vision Res. 20, 995–999 (1980).
    [Crossref] [PubMed]
  39. M. Ayama, P. K. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
    [Crossref] [PubMed]
  40. M. Ayama, M. Ikeda, “Additivity of yellow chromatic valence,” Vision Res. 26, 763–769 (1986).
    [Crossref] [PubMed]
  41. S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
    [Crossref] [PubMed]

1986 (2)

J. J. Vos, “Are unique and invariant hues coupled?” Vision Res. 26, 337–342 (1986).
[Crossref] [PubMed]

M. Ayama, M. Ikeda, “Additivity of yellow chromatic valence,” Vision Res. 26, 763–769 (1986).
[Crossref] [PubMed]

1985 (2)

1984 (3)

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

W. Kurtenbach, C. E. Sternheim, L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365–372 (1984).
[Crossref] [PubMed]

1982 (1)

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Visions Res. 22, 1353–1362 (1982).
[Crossref]

1981 (1)

J. Larimer, “Red/green opponent colors equilibria measured on chromatic adapting fields: evidence for gain changes and restoring forces,” Vision Res. 21, 501–512 (1981).
[Crossref] [PubMed]

1980 (1)

M. Ikeda, M. Ayama, “Additivity of opponent chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref] [PubMed]

1979 (2)

1978 (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

1975 (2)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

1974 (1)

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

1971 (1)

1970 (1)

1967 (1)

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

1965 (1)

1964 (1)

M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
[Crossref] [PubMed]

1958 (1)

1955 (3)

1951 (1)

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–203 (1951).
[Crossref] [PubMed]

1950 (1)

1945 (1)

1943 (1)

1939 (2)

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

F. L. Dimmick, M. R. Hubbard, “The spectral components of psychologically unique red,” Am. J. Psychol. 52, 348–353 (1939).
[Crossref]

1931 (1)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

1920 (1)

E. Schrödinger, “Outline of a theory of color measurement for daylight vision,” Ann Phys. 63, 397–447, 481–520 (1920) [translated by D. L. MacAdam, in Sources of Color Science (MIT Press, Cambridge, Mass., 1970)].
[Crossref]

1910 (1)

W. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London Ser. A 83, 120–127 (1910).

Abney, W. W.

W. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London Ser. A 83, 120–127 (1910).

Akita, M.

S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
[Crossref] [PubMed]

M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
[Crossref] [PubMed]

Ayama, M.

M. Ayama, M. Ikeda, “Additivity of yellow chromatic valence,” Vision Res. 26, 763–769 (1986).
[Crossref] [PubMed]

M. Ayama, P. K. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Additivity of opponent chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Nonlinear nature of the yellow chromatic valence,” in Colour Vision, J. D. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 345–351.

Boynton, R. M.

Brocklebank, R. W.

Burns, S. A.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Cicerone, C. M.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Cowan, W. B.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Visions Res. 22, 1353–1362 (1982).
[Crossref]

Dimmick, F. L.

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

F. L. Dimmick, M. R. Hubbard, “The spectral components of psychologically unique red,” Am. J. Psychol. 52, 348–353 (1939).
[Crossref]

Ejima, Y.

Elsner, A. E.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Fry, G. A.

Glasser, L. G.

Gordon, J.

Graham, C. H.

M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
[Crossref] [PubMed]

Hsia, Y.

M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
[Crossref] [PubMed]

Hubbard, M. R.

F. L. Dimmick, M. R. Hubbard, “The spectral components of psychologically unique red,” Am. J. Psychol. 52, 348–353 (1939).
[Crossref]

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

Hurvich, L. M.

Ikeda, M.

M. Ayama, M. Ikeda, “Additivity of yellow chromatic valence,” Vision Res. 26, 763–769 (1986).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Additivity of opponent chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Nonlinear nature of the yellow chromatic valence,” in Colour Vision, J. D. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 345–351.

Jameson, D.

Judd, D. B.

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. Subcommittee on the Spacing of the Munsell Colors,”J. Opt. Soc. Am. 33, 385–418 (1943).
[Crossref]

D. B. Judd, Secr. Rep. “Colorimetry and artificial daylight,” in Proceedings 12th Session CIE, Stockholm (Commission Internationale de l’Eclairage, Paris, 1959), Vol. I, p. 11.

Kaiser, P. K.

M. Ayama, P. K. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[Crossref] [PubMed]

Krantz, D. H.

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

Kurtenbach, W.

Larimer, J.

J. Larimer, “Red/green opponent colors equilibria measured on chromatic adapting fields: evidence for gain changes and restoring forces,” Vision Res. 21, 501–512 (1981).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

MacAdam, D. L.

McKinney, A. H.

Muth, E. J.

Nagy, A. L.

A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
[Crossref] [PubMed]

Nakatsue, T.

M. Ayama, P. K. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[Crossref] [PubMed]

Newhall, S. M.

Nickerson, D.

Persels, C. G.

Pokorny, J.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Purdy, D. M.

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

Reilly, C. D.

Richards, W.

Robertson, A. R.

A. R. Robertson, “A new determination of lines of constant hue,” in AIC Proceedings Color 69 (Musterschnidt-Verlag, Göttingen, Federal Republic of Germany, 1970), pp. 395–402.

Schnelle, P. D.

Schrödinger, E.

E. Schrödinger, “Outline of a theory of color measurement for daylight vision,” Ann Phys. 63, 397–447, 481–520 (1920) [translated by D. L. MacAdam, in Sources of Color Science (MIT Press, Cambridge, Mass., 1970)].
[Crossref]

Smith, V. C.

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Spillmann, L.

Sternheim, C. E.

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd ed. (Wiley, New York, 1982), p. 672.

Takahashi, S.

Vos, J. J.

J. J. Vos, “Are unique and invariant hues coupled?” Vision Res. 26, 337–342 (1986).
[Crossref] [PubMed]

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

Ware, C.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Visions Res. 22, 1353–1362 (1982).
[Crossref]

Werner, J. S.

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Wilson, M. H.

Wooten, B. R.

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd ed. (Wiley, New York, 1982), p. 672.

Yonemura, G. T.

Am. J. Psychol. (3)

D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[Crossref]

F. L. Dimmick, M. R. Hubbard, “The spectral location of psychologically unique yellow, green, and blue,” Am. J. Psychol. 52, 242–254 (1939).
[Crossref]

F. L. Dimmick, M. R. Hubbard, “The spectral components of psychologically unique red,” Am. J. Psychol. 52, 348–353 (1939).
[Crossref]

Ann Phys. (1)

E. Schrödinger, “Outline of a theory of color measurement for daylight vision,” Ann Phys. 63, 397–447, 481–520 (1920) [translated by D. L. MacAdam, in Sources of Color Science (MIT Press, Cambridge, Mass., 1970)].
[Crossref]

Color Res. Appl. (1)

J. J. Vos, “Colorimetric and photometric properties of a 2° fundamental observer,” Color Res. Appl. 3, 125–128 (1978).
[Crossref]

J. Opt. Soc. Am. (12)

W. Richards, “Differences among color normals: classes I and II,”J. Opt. Soc. Am. 57, 1047–1055 (1967).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation,”J. Opt. Soc. Am. 45, 546–552 (1955).
[Crossref]

L. M. Hurvich, D. Jameson, “Some quantitative aspects of opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision,”J. Opt. Soc. Am. 45, 602–616 (1955).
[Crossref] [PubMed]

R. M. Boynton, J. Gordon, “Bezold–Brücke hue shift measured by color-naming technique,”J. Opt. Soc. Am. 55, 78–86 (1965).
[Crossref]

J. S. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,”J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

G. A. Fry, “A photo-receptor mechanism for the modulation theory of color vision,”J. Opt. Soc. Am. 35, 114–135 (1945).
[Crossref]

L. G. Glasser, A. H. McKinney, C. D. Reilly, P. D. Schnelle, “Cube-root color coordinate system,”J. Opt. Soc. Am. 48, 736–740 (1958).
[Crossref]

G. T. Yonemura, “Opponent-color-theory treatment of the CIE 1960 (u, v) diagram: chromaticness difference and constant-hue loci,”J. Opt. Soc. Am. 60, 1407–1409 (1970).
[Crossref] [PubMed]

E. J. Muth, C. G. Persels, “Constant-brightness surfaces generated by several color-difference formulas,”J. Opt. Soc. Am. 61, 1152–1154 (1971).
[Crossref] [PubMed]

S. M. Newhall, D. Nickerson, D. B. Judd, “Final report of the O.S.A. Subcommittee on the Spacing of the Munsell Colors,”J. Opt. Soc. Am. 33, 385–418 (1943).
[Crossref]

D. L. MacAdam, “Loci of constant hue and brightness determined with various surrounding colors,”J. Opt. Soc. Am. 40, 589–595 (1950).
[Crossref]

M. H. Wilson, R. W. Brocklebank, “Complementary hues of after-images,”J. Opt. Soc. Am. 45, 293–299 (1955).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

Proc. R. Soc. London Ser. A (1)

W. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London Ser. A 83, 120–127 (1910).

Science (1)

L. M. Hurvich, D. Jameson, “The binocular fusion of yellow in relation to color theories,” Science 114, 199–203 (1951).
[Crossref] [PubMed]

Vision Res. (13)

M. Akita, C. H. Graham, Y. Hsia, “Maintaining an absolute hue in the presence of different background colors,” Vision Res. 4, 539–556 (1964). Values in Table 1 are the average of five values with dark-background sessions in the different background conditions for observers Sc and Sd from Table 4 of Akita et al.
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—I. Red/green equilibria,” Vision Res. 14, 1127–1140 (1974).
[Crossref] [PubMed]

J. Larimer, D. H. Krantz, C. M. Cicerone, “Opponent process additivity—II. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975).
[Crossref] [PubMed]

C. M. Cicerone, D. H. Krantz, J. Larimer, “Opponent additivity—III. Effect of moderate chromatic adaptation,” Vision Res. 15, 1125–1135 (1975).
[Crossref]

S. A. Burns, A. E. Elsner, J. Pokorny, V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

A. L. Nagy, “Unique hues are not invariant with brief stimulus durations,” Vision Res. 19, 1427–1432 (1979).
[Crossref] [PubMed]

Y. Ejima, S. Takahashi, “Bezold–Brücke hue shift and nonlinearity in opponent-color process,” Vision Res. 24, 1897–1904 (1984).
[Crossref]

J. J. Vos, “Are unique and invariant hues coupled?” Vision Res. 26, 337–342 (1986).
[Crossref] [PubMed]

J. Larimer, “Red/green opponent colors equilibria measured on chromatic adapting fields: evidence for gain changes and restoring forces,” Vision Res. 21, 501–512 (1981).
[Crossref] [PubMed]

M. Ikeda, M. Ayama, “Additivity of opponent chromatic valence,” Vision Res. 20, 995–999 (1980).
[Crossref] [PubMed]

M. Ayama, P. K. Kaiser, T. Nakatsue, “Additivity of red chromatic valence,” Vision Res. 25, 1885–1891 (1985).
[Crossref] [PubMed]

M. Ayama, M. Ikeda, “Additivity of yellow chromatic valence,” Vision Res. 26, 763–769 (1986).
[Crossref] [PubMed]

Visions Res. (1)

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Visions Res. 22, 1353–1362 (1982).
[Crossref]

Other (6)

M. Ikeda, M. Ayama, “Nonlinear nature of the yellow chromatic valence,” in Colour Vision, J. D. Mollon, L. Sharpe, eds. (Academic, London, 1983), pp. 345–351.

The curves are calculated by the least-squares fitting of the third polynomial for both x and y as a function of pe.

The CIE 1976 (u′, v′) tables are available from M. Ayama or P. K. Kaiser.

D. B. Judd, Secr. Rep. “Colorimetry and artificial daylight,” in Proceedings 12th Session CIE, Stockholm (Commission Internationale de l’Eclairage, Paris, 1959), Vol. I, p. 11.

A. R. Robertson, “A new determination of lines of constant hue,” in AIC Proceedings Color 69 (Musterschnidt-Verlag, Göttingen, Federal Republic of Germany, 1970), pp. 395–402.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulas, 2nd ed. (Wiley, New York, 1982), p. 672.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the apparatus. See text for details.

Fig. 2
Fig. 2

Unique hue and binary balanced hue wavelengths at 10,100, and 1000 Td for two observers. (a) Observer TN and (b) observer MA. R, Y, G and B denote unique red, yellow, green, and blue, respectively. RY, GY, GB, and RB denote binary balanced hues, red–yellow, green–yellow, green–blue, and red–blue, respectively. Horizontal bars represent standard deviation.

Fig. 3
Fig. 3

Constant hue loci at 10 Td plotted in the Judd 1951 chromaticity diagram for two observers. (a) Observer TN and (b) observer MA. Each point is an average of four sessions, and error bars indicate standard deviations. Hue notations are same as in Fig. 2.

Fig. 4
Fig. 4

(a) Unique hue loci and (b) binary balanced hue loci at 10, 100, and 1000 Td for observer TN. Hue notations are same as in Fig. 2. Best-fitting curves are drawn among the data points.

Fig. 5
Fig. 5

(a) Unique hue loci and (b) binary balanced hue loci at 10, 100, and 1000 Td for observer MA. Hue notations are same as Fig. 2. Best-fitting curves are drawn among the data points. Error bars denote they standard deviations for the unique blue data. For the unique yellow data, are smaller than the symbols.

Fig. 6
Fig. 6

Comparison of green constant hue loci starting from each observer’s own unique green and exchanged unique green wavelengths.

Tables (3)

Tables Icon

Table 1 Wavelengths and Complementaries for the Unique and Binary Balanced Huesa

Tables Icon

Table 2 Chromaticity Coordinates of Constant Hue Loci (Observer TN)a

Tables Icon

Table 3 Chromaticity Coordinates of Constant Hue Loci (Observer MA)a

Metrics