Abstract

A technique is described whereby resolution many times the Rayleigh limit is achieved by the use of incoherent-illumination interferometry. An object and an imaging system are in one interferometer branch, and a duplicate, dummy system is in the other. The resolution is determined by the aperture of the dummy system and by the size of the source.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 133–136.
  2. J. L. Harris, “Diffraction and resolving power,”J. Opt. Soc. Am. 54, 931–936 (1964).
    [CrossRef]
  3. C. W. Barnes, “Object restoration in a diffraction-limited imaging system,”J. Opt. Soc. Am. 56, 575–578 (1966).
    [CrossRef]
  4. W. Lukosz, “Optical system with resolving power exceeding the classical limit,”J. Opt. Soc. Am. 56, 1463–1472 (1966).
    [CrossRef]
  5. A. W. Lohman, D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
    [CrossRef]
  6. M. A. Grimm, A. W. Lohmann, “Superresolution image for one-dimensional object,”J. Opt. Soc. Am. 56, 1151–1156 (1966).
    [CrossRef]
  7. W. Lukosz, “Optical system with resolving power exceeding the classical limit. II,”J. Opt. Soc. Am. 57, 932–941 (1967).
    [CrossRef]
  8. M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
    [CrossRef]
  9. W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,”J. Opt. Soc. Am. 1, 241–250 (1984).
    [CrossRef]
  10. D. Gorlitz, F. Lanzl, “Methods of zero-order noncoherent filtering,” Opt. Commun. 20, 68–72 (1977).
    [CrossRef]
  11. A. Lohmann, “Incoherent optical processing of complex data,” Appl. Opt. 16, 261–263 (1977).
    [CrossRef] [PubMed]
  12. W. T. Rhodes, “Bipolar point-spread function synthesis by phase switching,” Appl. Opt. 16, 265–267 (1977).
    [CrossRef] [PubMed]
  13. A. W. Lohmann, W. T. Rhodes, “Two-pupil synthesis of optical transfer function,” Appl. Opt. 17, 1141–1151 (1978).
    [CrossRef] [PubMed]
  14. W. Stoner, “Edge enhancement with incoherent optics,” Appl. Opt. 16, 1451–1453 (1977).
    [CrossRef] [PubMed]
  15. W. Stoner, “Incoherent optical processing via spatially offset pupil masks,” Appl. Opt. 17, 2454–2467 (1978).
    [CrossRef] [PubMed]
  16. D. K. Angell, “Incoherent spatial filtering with grating interferometers,” Appl. Opt. 24, 2903–2906 (1985).
    [CrossRef] [PubMed]
  17. E. N. Leith, D. K. Angell, “Generalization of some incoherent spatial filtering techniques,” Appl. Opt. 25, 499–502 (1986).
    [CrossRef] [PubMed]

1986

1985

1984

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,”J. Opt. Soc. Am. 1, 241–250 (1984).
[CrossRef]

1978

1977

1973

M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

1967

1966

1964

Angell, D. K.

Barnes, C. W.

Cathey, W. T.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,”J. Opt. Soc. Am. 1, 241–250 (1984).
[CrossRef]

Frieden, B. R.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,”J. Opt. Soc. Am. 1, 241–250 (1984).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 133–136.

Gorlitz, D.

D. Gorlitz, F. Lanzl, “Methods of zero-order noncoherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Grimm, M. A.

Harris, J. L.

Kondo, M.

M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Lanzl, F.

D. Gorlitz, F. Lanzl, “Methods of zero-order noncoherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Leith, E. N.

Lohman, A. W.

Lohmann, A.

Lohmann, A. W.

Lukosz, W.

Paris, D. P.

Rhodes, W. T.

Rushforth, C. K.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,”J. Opt. Soc. Am. 1, 241–250 (1984).
[CrossRef]

Stoner, W.

Takuso Sato, T.

M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Ueda, M.

M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Opt. Acta

M. Ueda, T. Takuso Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Opt. Commun.

D. Gorlitz, F. Lanzl, “Methods of zero-order noncoherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 133–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two-lens imaging system, with object s, output (or image) plane O, and aperture L.

Fig. 2
Fig. 2

Superresolution system, with gratings G1 and G2, object s1, pinhole (spatial filter) H1, and output plane O.

Fig. 3
Fig. 3

Experimental results. (a) Image of resolution chart formed with horizontal spatial filter in conventional one-channel imaging system; (b) same as (a) but the lower branch of Fig. 2 was introduced; (c) same as (b) but for a larger source.

Fig. 4
Fig. 4

System transfer function H of a six-channel interferometer, where H1 = rect(fx/f0), Hn = δ(fxf0/2) + δ(fx + f0/2), n = 2, 3, 4, 5, 6.

Fig. 5
Fig. 5

Superresolution system for white light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g = ( s 1 s 2 * ) * ( h 1 h 2 * ) + complex conjugate ,
g = s 1 * h 2 * .
H = H 1 * H 2 * H 3 * H 4 * H 5 * H 6 .

Metrics