Abstract

A new representation for the D log E curve for photographic emulsions, based on the Fermi formula, is presented. This representation uses easily measured photometric parameters and is conveniently adapted for different kinds of absorption holographic recording materials. The corresponding transmittance-versus-exposure curve is used to calculate the influence of film nonlinearity on Fourier-transform hologram-recording parameters.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kozma, “Photographic recording of spatially modulated coherent light,”J. Opt. Soc. Am. 56, 428–432 (1966).
    [Crossref]
  2. A. A. Friesem, J. S. Zelenka, “Effects of film nonlinearities in holography,” Appl. Opt. 6, 1755–1759 (1967).
    [Crossref] [PubMed]
  3. A. Kozma, Opt. Acta 15, 527 (1968).
    [Crossref]
  4. O. Bryngdahl, A. Lohmann, “Nonlinear effects in holography,”J. Opt. Soc. Am. 58, 1325–1334 (1968).
    [Crossref]
  5. A. Kozma, G. W. Jull, K. O. Hill, “An analytical and experimental study of nonlinearities in hologram recording,” Appl. Opt. 9, 721–731 (1970).
    [Crossref] [PubMed]
  6. G. Goldmann, Opt. Quantum Electron. 8, 355 (1976).
    [Crossref]
  7. T. Lipowiecki, Opt. Appl. 11, 105 (1981).
  8. N. Sultanova, H. Kasprzak, Opt. Appl. 14, 442 (1984).

1984 (1)

N. Sultanova, H. Kasprzak, Opt. Appl. 14, 442 (1984).

1981 (1)

T. Lipowiecki, Opt. Appl. 11, 105 (1981).

1976 (1)

G. Goldmann, Opt. Quantum Electron. 8, 355 (1976).
[Crossref]

1970 (1)

1968 (2)

1967 (1)

1966 (1)

Bryngdahl, O.

Friesem, A. A.

Goldmann, G.

G. Goldmann, Opt. Quantum Electron. 8, 355 (1976).
[Crossref]

Hill, K. O.

Jull, G. W.

Kasprzak, H.

N. Sultanova, H. Kasprzak, Opt. Appl. 14, 442 (1984).

Kozma, A.

Lipowiecki, T.

T. Lipowiecki, Opt. Appl. 11, 105 (1981).

Lohmann, A.

Sultanova, N.

N. Sultanova, H. Kasprzak, Opt. Appl. 14, 442 (1984).

Zelenka, J. S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

D log E curve of a hypothetical photosensitive material, showing the determination of the inertial point log E, the slope γ, the maximum of the measured optical density D, the density of the inertial point D(log Ei), and the density D(½ log Ei).

Fig. 2
Fig. 2

Exposure derivative of the amplitude transmittance T as a function of T for Agfa-Gevaert 10E56 emulsion. Developing conditions: developer G280 time, 4 min; temperature, 20°C.

Fig. 3
Fig. 3

Recording and reconstruction geometry of a Fourier hologram.

Fig. 4
Fig. 4

The object function and its numerical reconstruction.

Fig. 5
Fig. 5

The influence of the T-E curve nonlinearity on the amplitude transmittance of the simulated hologram.

Fig. 6
Fig. 6

Signal-to-noise ratio of (a) Agfa-Gevaert 10E56 and (b) Bulgarian HP490 plates.

Fig. 7
Fig. 7

Diffraction efficiency of (a) Agfa-Gevaert 10E56 and (b) Bulgarian HP490 plates.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D = - 2 log T .
D = D 1 + exp ( a - b · log E ) ,
a = 2 ( 1 + 2 γ log E i / D ) ,
b = 4 γ / D .
D = D 1 + exp ( a - b log E ) + exp ( c - d log E ) .
C = ln ( { D D ( ½ log E i ) - [ 1 + exp ( 2 + 2 γ log E i D ) ] } 2 D D ( log E i ) - ( 1 + e 2 ) ) ,
d = c - ln [ D D ( log E i ) - ( 1 + e 2 ) ] log E i .
I ( x , y ) = | A r exp ( - i 2 π μ x ) + U 0 ( x λ f , y λ f ) | 2 ,
U 0 ( x λ f ) = A 0 ( x λ f ) exp [ - i φ ( x λ f ) ] ,
I ( x ) = A r 2 + A 0 2 ( x λ f ) + 2 A r A 0 ( x λ f ) cos [ 2 π μ x - φ ( x λ f ) ] .
I ( m , x ) = A ¯ 0 2 ( m + 1 ) + 2 m A 0 ( x λ f ) A ¯ 0 cos [ 2 π μ x - φ ( x λ f ) ] .
A ( t , m , x ) = E [ E 0 · I ( m , x ) ] .

Metrics