Abstract

A three-dimensional analysis of bending losses in dielectric optical waveguides is presented. It constitutes a nontrivial generalization of previous two- and three-dimensional studies by other authors. Our analysis is based on homogeneous integral equations for the total radiation field and suitable asymptotic approximations for Green’s functions. A key role is played by a new three-dimensional approximation for a relevant Bessel function with large order and argument (the former being larger than the latter). A nontrivial check of the consistency of all those approximations is given. General formulas are presented for the radiated field and the energy flow and for a bending-loss coefficient in three dimensions. Numerical results are also given, in order to assess the difference between the results of other authors and ours. Such a difference is rather small for monomode behavior near cutoff, increases as the behavior of the waveguide changes from monomode to multimode, and decreases as the parameter V increases for a given core radius and propagation mode.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (68)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription