Abstract

The optimization of an optical system is generally carried out by minimizing the wave-front aberrations, the x and y transverse aberrations, or a combination of both. In the last-named, most general case, the optimization implies the treatment of a large number of functions of quite a different nature. We propose to use, together with the Zernike polynomials that orthogonalize the wave-front aberrations, a new set of wave-front polynomials that orthogonalize the transverse aberrations. These polynomials turn out to be a simple linear combination of Zernike polynomials. The combination of these two sets of wave-front polynomials with proper weighting yields the possibility of optimizing the frequency response of both slightly and severely aberrated systems in a formally identical way. The advantage of the method is that one does not have to leave the domain of the wave-front aberration to characterize an optical system, even when severe aberrations are present. The polynomials that minimize the transverse aberrations yield optimum response at very low frequencies; other linear combinations of Zernike polynomials are shown to maximize the frequency response at relatively high spatial frequencies.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription