Abstract

Colored halos are produced by refraction of light by solid hexagonal snow crystals with well-defined facets whose size is sufficiently large (>20 μm) to avoid significant diffraction effects. Large crystals fall with their major axes horizontal and oscillate by eddy shedding to give dogs and arcs. The formation of such crystals is strongly dependent on changing growth conditions, particularly ice supersaturation, air pressure, temperature, and the thermal radiation environment. Optimum meteorological conditions for formation of such crystals are suggested.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Frazer, “Which size of ice crystals causes halos?”J. Opt. Soc. Am. 69, 1112–1118 (1979).
    [CrossRef]
  2. R. A. R. Tricker, Introduction to Atmospheric Optics (Elsevier, New York, 1970).
  3. R. Greenler, Rainbows, Haloes, and Glories (Cambridge University, Cambridge, 1980).
  4. R. List, R. S. Schemenauer, “Freefall behavior of planar snow crystals, conical graupel, and small hail,”J. Atmos. Sci. 28, 110–115 (1971).
    [CrossRef]
  5. B. J. Mason, The Physics of Clouds (Oxford University, Oxford, 1971).
  6. H. R. Byers, Elements of Cloud Physics (U. Chicago Press, Chicago, Ill., 1965).
  7. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1978).
    [CrossRef]
  8. G. W. Paltridge, C. M. R. Platt, “Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud,”Q. J. R. Meteorol. Soc. 107, 367–380 (1981).
    [CrossRef]
  9. W. T. R. Roach, “On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet,”Q. J. R. Meteorol. Soc. 102, 361 (1976).
    [CrossRef]
  10. R. A. R. Tricker, “Arcs associated with halos of unusual radii,”J. Opt. Soc. Am. 69, 1093–1100 (1979).
    [CrossRef]
  11. M. Kajikawa, “Experimental formula of falling velocity of snow crystals,”J. Meteorol. Soc. Jpn. 53, 267–275 (1975).
  12. K. Sassen, “Remote sensing of planar ice crystal fall attitudes,”J. Meteorol. Soc. Jpn. 58, 422–429 (1980).
  13. K. Jayaweera, B. J. Mason, “The behaviour of freely falling cylinders and cones in a viscous fluid,”J. Fluid Mech. 22, 709–720 (1985).
    [CrossRef]
  14. C. V. McKnight, J. Hallett, “X-ray topographic studies of dislocations in vapor-grown ice crystals,”J. Glaciol. 21, 397–407 (1978).
  15. Y. Furakawa, T. Kobayashi, “On the growth mechanisms of polycrystalline snow crystals with a specific grain boundary,”J. Cryst. Growth 45, 57–65 (1978).
    [CrossRef]
  16. E. Whalley, “Scheiner’s halo: evidence of ice Ic in the atmosphere,” Science 211, 389–390 (1981).
    [CrossRef] [PubMed]
  17. T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
    [CrossRef]
  18. A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: ice Ic or polycrystallerie ice Ih?” submitted to J. Atmos. Sci.
  19. C. W. Lee, “On the crystallographic orientation of spatial branches in natural polycrystalline snow crystals,”J. Meteorol. Soc. Jpn. 50, 171–181 (1972).
  20. V. W. Keller, J. Hallett, “Influence of air velocity on the habit of ice crystal growth from the vapor,”J. Cryst. Growth 60, 91–106 (1982).
    [CrossRef]
  21. A. Yamashita, “Growth processes of ice crystals and a law which is related to the symmetric growth of plate-like snow crystals,” in Proceedings of the International Cloud Physics Conference (American Meteorological Society, Boston, Mass., 1976), pp. 136–141.
  22. V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
    [CrossRef]
  23. Y. Furakawa, Institute of Low-Temperature Science, Hokkaido University, Sapporo, Japan, and T. Gonda, Science University of Tokyo, Noda, Japan (personal communication).
  24. Y. Furakawa, J. Hallett, “Haloes in laboratory-produced ice crystals,” submitted to Weather.
  25. J. Hallett, “How snow crystals grow,” Am. Sci. 72, 582–589 (1984).
  26. Y. Furakawa, M. Yamamoto, T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal,” submitted to J. Cryst. Growth.
  27. J. Hallett, R. E. J. Lewis, “Mother of pearl clouds,” Weather 22, 56–65 (1967).
    [CrossRef]
  28. P. Doherty, T. C. Bennett, “Carbon dioxide ice halos on Mars: prediction from crystal growth experiments,” in Digest of the Topical Meeting on Meteorological Optics (Optical Society of America, Washington, D.C., 1986), pp. 20–23.
  29. T. Kobayashi, “On twinned structures in snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
    [CrossRef]
  30. H. K. Weickmann, “Die Eisphase in der Atmosphäre,” Reports and Translations, Ministry of Supply (A) Vökenrode (H. M. Stationery Office, London, 1947), no. 716.
  31. A. T. Hymsfield, R. J. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972).
    [CrossRef]
  32. H. Uyeda, K. Kikuchi, “Observations of three-dimensional configuration of snow crystals of combination bullet type,”J. Meteorol. Soc. Jpn. 57, 488–492 (1979).
  33. J. Hallett, “The growth of ice crystals on partly cleaved covellite surfaces,” Phil. Mag. 6, 1073–1087 (1961).
    [CrossRef]

1985

K. Jayaweera, B. J. Mason, “The behaviour of freely falling cylinders and cones in a viscous fluid,”J. Fluid Mech. 22, 709–720 (1985).
[CrossRef]

1984

J. Hallett, “How snow crystals grow,” Am. Sci. 72, 582–589 (1984).

1982

V. W. Keller, J. Hallett, “Influence of air velocity on the habit of ice crystal growth from the vapor,”J. Cryst. Growth 60, 91–106 (1982).
[CrossRef]

1981

E. Whalley, “Scheiner’s halo: evidence of ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

G. W. Paltridge, C. M. R. Platt, “Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud,”Q. J. R. Meteorol. Soc. 107, 367–380 (1981).
[CrossRef]

1980

V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
[CrossRef]

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,”J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

1979

H. Uyeda, K. Kikuchi, “Observations of three-dimensional configuration of snow crystals of combination bullet type,”J. Meteorol. Soc. Jpn. 57, 488–492 (1979).

R. A. R. Tricker, “Arcs associated with halos of unusual radii,”J. Opt. Soc. Am. 69, 1093–1100 (1979).
[CrossRef]

A. B. Frazer, “Which size of ice crystals causes halos?”J. Opt. Soc. Am. 69, 1112–1118 (1979).
[CrossRef]

1978

C. V. McKnight, J. Hallett, “X-ray topographic studies of dislocations in vapor-grown ice crystals,”J. Glaciol. 21, 397–407 (1978).

Y. Furakawa, T. Kobayashi, “On the growth mechanisms of polycrystalline snow crystals with a specific grain boundary,”J. Cryst. Growth 45, 57–65 (1978).
[CrossRef]

1976

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

W. T. R. Roach, “On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet,”Q. J. R. Meteorol. Soc. 102, 361 (1976).
[CrossRef]

T. Kobayashi, “On twinned structures in snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

1975

M. Kajikawa, “Experimental formula of falling velocity of snow crystals,”J. Meteorol. Soc. Jpn. 53, 267–275 (1975).

1972

C. W. Lee, “On the crystallographic orientation of spatial branches in natural polycrystalline snow crystals,”J. Meteorol. Soc. Jpn. 50, 171–181 (1972).

A. T. Hymsfield, R. J. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

1971

R. List, R. S. Schemenauer, “Freefall behavior of planar snow crystals, conical graupel, and small hail,”J. Atmos. Sci. 28, 110–115 (1971).
[CrossRef]

1967

J. Hallett, R. E. J. Lewis, “Mother of pearl clouds,” Weather 22, 56–65 (1967).
[CrossRef]

1961

J. Hallett, “The growth of ice crystals on partly cleaved covellite surfaces,” Phil. Mag. 6, 1073–1087 (1961).
[CrossRef]

Bennett, T. C.

P. Doherty, T. C. Bennett, “Carbon dioxide ice halos on Mars: prediction from crystal growth experiments,” in Digest of the Topical Meeting on Meteorological Optics (Optical Society of America, Washington, D.C., 1986), pp. 20–23.

Byers, H. R.

H. R. Byers, Elements of Cloud Physics (U. Chicago Press, Chicago, Ill., 1965).

Doherty, P.

P. Doherty, T. C. Bennett, “Carbon dioxide ice halos on Mars: prediction from crystal growth experiments,” in Digest of the Topical Meeting on Meteorological Optics (Optical Society of America, Washington, D.C., 1986), pp. 20–23.

Frazer, A. B.

Furakawa, Y.

Y. Furakawa, T. Kobayashi, “On the growth mechanisms of polycrystalline snow crystals with a specific grain boundary,”J. Cryst. Growth 45, 57–65 (1978).
[CrossRef]

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

Y. Furakawa, Institute of Low-Temperature Science, Hokkaido University, Sapporo, Japan, and T. Gonda, Science University of Tokyo, Noda, Japan (personal communication).

Y. Furakawa, J. Hallett, “Haloes in laboratory-produced ice crystals,” submitted to Weather.

Y. Furakawa, M. Yamamoto, T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal,” submitted to J. Cryst. Growth.

Greenler, R.

R. Greenler, Rainbows, Haloes, and Glories (Cambridge University, Cambridge, 1980).

Hallett, J.

J. Hallett, “How snow crystals grow,” Am. Sci. 72, 582–589 (1984).

V. W. Keller, J. Hallett, “Influence of air velocity on the habit of ice crystal growth from the vapor,”J. Cryst. Growth 60, 91–106 (1982).
[CrossRef]

V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
[CrossRef]

C. V. McKnight, J. Hallett, “X-ray topographic studies of dislocations in vapor-grown ice crystals,”J. Glaciol. 21, 397–407 (1978).

J. Hallett, R. E. J. Lewis, “Mother of pearl clouds,” Weather 22, 56–65 (1967).
[CrossRef]

J. Hallett, “The growth of ice crystals on partly cleaved covellite surfaces,” Phil. Mag. 6, 1073–1087 (1961).
[CrossRef]

Y. Furakawa, J. Hallett, “Haloes in laboratory-produced ice crystals,” submitted to Weather.

Hymsfield, A. T.

A. T. Hymsfield, R. J. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

Jayaweera, K.

K. Jayaweera, B. J. Mason, “The behaviour of freely falling cylinders and cones in a viscous fluid,”J. Fluid Mech. 22, 709–720 (1985).
[CrossRef]

Kajikawa, M.

M. Kajikawa, “Experimental formula of falling velocity of snow crystals,”J. Meteorol. Soc. Jpn. 53, 267–275 (1975).

Keller, V.

V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
[CrossRef]

Keller, V. W.

V. W. Keller, J. Hallett, “Influence of air velocity on the habit of ice crystal growth from the vapor,”J. Cryst. Growth 60, 91–106 (1982).
[CrossRef]

Kikuchi, K.

H. Uyeda, K. Kikuchi, “Observations of three-dimensional configuration of snow crystals of combination bullet type,”J. Meteorol. Soc. Jpn. 57, 488–492 (1979).

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

Klett, J. D.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1978).
[CrossRef]

Knight, C. A.

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: ice Ic or polycrystallerie ice Ih?” submitted to J. Atmos. Sci.

Knollenberg, R. J.

A. T. Hymsfield, R. J. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

Kobayashi, T.

Y. Furakawa, T. Kobayashi, “On the growth mechanisms of polycrystalline snow crystals with a specific grain boundary,”J. Cryst. Growth 45, 57–65 (1978).
[CrossRef]

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

T. Kobayashi, “On twinned structures in snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

Kuroda, T.

Y. Furakawa, M. Yamamoto, T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal,” submitted to J. Cryst. Growth.

Lee, C. W.

C. W. Lee, “On the crystallographic orientation of spatial branches in natural polycrystalline snow crystals,”J. Meteorol. Soc. Jpn. 50, 171–181 (1972).

Lewis, R. E. J.

J. Hallett, R. E. J. Lewis, “Mother of pearl clouds,” Weather 22, 56–65 (1967).
[CrossRef]

List, R.

R. List, R. S. Schemenauer, “Freefall behavior of planar snow crystals, conical graupel, and small hail,”J. Atmos. Sci. 28, 110–115 (1971).
[CrossRef]

Mason, B. J.

K. Jayaweera, B. J. Mason, “The behaviour of freely falling cylinders and cones in a viscous fluid,”J. Fluid Mech. 22, 709–720 (1985).
[CrossRef]

B. J. Mason, The Physics of Clouds (Oxford University, Oxford, 1971).

McKnight, C. V.

V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
[CrossRef]

C. V. McKnight, J. Hallett, “X-ray topographic studies of dislocations in vapor-grown ice crystals,”J. Glaciol. 21, 397–407 (1978).

Paltridge, G. W.

G. W. Paltridge, C. M. R. Platt, “Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud,”Q. J. R. Meteorol. Soc. 107, 367–380 (1981).
[CrossRef]

Platt, C. M. R.

G. W. Paltridge, C. M. R. Platt, “Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud,”Q. J. R. Meteorol. Soc. 107, 367–380 (1981).
[CrossRef]

Pruppacher, H. R.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1978).
[CrossRef]

Roach, W. T. R.

W. T. R. Roach, “On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet,”Q. J. R. Meteorol. Soc. 102, 361 (1976).
[CrossRef]

Sassen, K.

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,”J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

Schemenauer, R. S.

R. List, R. S. Schemenauer, “Freefall behavior of planar snow crystals, conical graupel, and small hail,”J. Atmos. Sci. 28, 110–115 (1971).
[CrossRef]

Tricker, R. A. R.

R. A. R. Tricker, “Arcs associated with halos of unusual radii,”J. Opt. Soc. Am. 69, 1093–1100 (1979).
[CrossRef]

R. A. R. Tricker, Introduction to Atmospheric Optics (Elsevier, New York, 1970).

Uyeda, H.

H. Uyeda, K. Kikuchi, “Observations of three-dimensional configuration of snow crystals of combination bullet type,”J. Meteorol. Soc. Jpn. 57, 488–492 (1979).

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

Weickmann, H. K.

H. K. Weickmann, “Die Eisphase in der Atmosphäre,” Reports and Translations, Ministry of Supply (A) Vökenrode (H. M. Stationery Office, London, 1947), no. 716.

Weinheimer, A. J.

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: ice Ic or polycrystallerie ice Ih?” submitted to J. Atmos. Sci.

Whalley, E.

E. Whalley, “Scheiner’s halo: evidence of ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Yamamoto, M.

Y. Furakawa, M. Yamamoto, T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal,” submitted to J. Cryst. Growth.

Yamashita, A.

A. Yamashita, “Growth processes of ice crystals and a law which is related to the symmetric growth of plate-like snow crystals,” in Proceedings of the International Cloud Physics Conference (American Meteorological Society, Boston, Mass., 1976), pp. 136–141.

Am. Sci.

J. Hallett, “How snow crystals grow,” Am. Sci. 72, 582–589 (1984).

J. Atmos. Sci.

A. T. Hymsfield, R. J. Knollenberg, “Properties of cirrus generating cells,”J. Atmos. Sci. 29, 1358–1366 (1972).
[CrossRef]

R. List, R. S. Schemenauer, “Freefall behavior of planar snow crystals, conical graupel, and small hail,”J. Atmos. Sci. 28, 110–115 (1971).
[CrossRef]

J. Cryst. Growth

T. Kobayashi, “On twinned structures in snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

V. W. Keller, J. Hallett, “Influence of air velocity on the habit of ice crystal growth from the vapor,”J. Cryst. Growth 60, 91–106 (1982).
[CrossRef]

V. Keller, C. V. McKnight, J. Hallett, “Growth of ice discs from the vapor and the mechanism of habit change of ice crystals,”J. Cryst. Growth 49, 458–464 (1980).
[CrossRef]

Y. Furakawa, T. Kobayashi, “On the growth mechanisms of polycrystalline snow crystals with a specific grain boundary,”J. Cryst. Growth 45, 57–65 (1978).
[CrossRef]

T. Kobayashi, Y. Furakawa, K. Kikuchi, H. Uyeda, “On the twinned structure of snow crystals,”J. Cryst. Growth 32, 233–249 (1976).
[CrossRef]

J. Fluid Mech.

K. Jayaweera, B. J. Mason, “The behaviour of freely falling cylinders and cones in a viscous fluid,”J. Fluid Mech. 22, 709–720 (1985).
[CrossRef]

J. Glaciol.

C. V. McKnight, J. Hallett, “X-ray topographic studies of dislocations in vapor-grown ice crystals,”J. Glaciol. 21, 397–407 (1978).

J. Meteorol. Soc. Jpn.

M. Kajikawa, “Experimental formula of falling velocity of snow crystals,”J. Meteorol. Soc. Jpn. 53, 267–275 (1975).

K. Sassen, “Remote sensing of planar ice crystal fall attitudes,”J. Meteorol. Soc. Jpn. 58, 422–429 (1980).

C. W. Lee, “On the crystallographic orientation of spatial branches in natural polycrystalline snow crystals,”J. Meteorol. Soc. Jpn. 50, 171–181 (1972).

H. Uyeda, K. Kikuchi, “Observations of three-dimensional configuration of snow crystals of combination bullet type,”J. Meteorol. Soc. Jpn. 57, 488–492 (1979).

J. Opt. Soc. Am.

Phil. Mag.

J. Hallett, “The growth of ice crystals on partly cleaved covellite surfaces,” Phil. Mag. 6, 1073–1087 (1961).
[CrossRef]

Q. J. R. Meteorol. Soc.

G. W. Paltridge, C. M. R. Platt, “Aircraft measurements of solar and infrared radiation and the microphysics of cirrus cloud,”Q. J. R. Meteorol. Soc. 107, 367–380 (1981).
[CrossRef]

W. T. R. Roach, “On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet,”Q. J. R. Meteorol. Soc. 102, 361 (1976).
[CrossRef]

Science

E. Whalley, “Scheiner’s halo: evidence of ice Ic in the atmosphere,” Science 211, 389–390 (1981).
[CrossRef] [PubMed]

Weather

J. Hallett, R. E. J. Lewis, “Mother of pearl clouds,” Weather 22, 56–65 (1967).
[CrossRef]

Other

P. Doherty, T. C. Bennett, “Carbon dioxide ice halos on Mars: prediction from crystal growth experiments,” in Digest of the Topical Meeting on Meteorological Optics (Optical Society of America, Washington, D.C., 1986), pp. 20–23.

Y. Furakawa, M. Yamamoto, T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal,” submitted to J. Cryst. Growth.

Y. Furakawa, Institute of Low-Temperature Science, Hokkaido University, Sapporo, Japan, and T. Gonda, Science University of Tokyo, Noda, Japan (personal communication).

Y. Furakawa, J. Hallett, “Haloes in laboratory-produced ice crystals,” submitted to Weather.

A. Yamashita, “Growth processes of ice crystals and a law which is related to the symmetric growth of plate-like snow crystals,” in Proceedings of the International Cloud Physics Conference (American Meteorological Society, Boston, Mass., 1976), pp. 136–141.

A. J. Weinheimer, C. A. Knight, “Scheiner’s halo: ice Ic or polycrystallerie ice Ih?” submitted to J. Atmos. Sci.

H. K. Weickmann, “Die Eisphase in der Atmosphäre,” Reports and Translations, Ministry of Supply (A) Vökenrode (H. M. Stationery Office, London, 1947), no. 716.

R. A. R. Tricker, Introduction to Atmospheric Optics (Elsevier, New York, 1970).

R. Greenler, Rainbows, Haloes, and Glories (Cambridge University, Cambridge, 1980).

B. J. Mason, The Physics of Clouds (Oxford University, Oxford, 1971).

H. R. Byers, Elements of Cloud Physics (U. Chicago Press, Chicago, Ill., 1965).

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Dordrecht, The Netherlands, 1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Conventional explanation of the halo. Crystals at minimum deviation refract sunlight at maximum intensity to the observer. Crystals at other angles refract sunlight away from observer to give a dark sky in the central region of the halo. A light sky outside the halo results from greater refraction at angles other than minimum deviation. R, red; B, blue.

Fig. 2
Fig. 2

Influence of temperature and pressure on the heat conductivity term (A) and vapor diffusivity term (B). The range of atmospheric variability of the diffusivity represents departures from the standard atmosphere. mb, millibars.

Fig. 3
Fig. 3

Temperature excess of crystals growing by diffusion in air in a supercooled water cloud at 1000 mbars and in the standard atmosphere. (×). mb, millibars.

Fig. 4
Fig. 4

Comparison between conduction and/or convection and radiation heat transfer for a spherical ice crystal in an environment with a radiation temperature close to crystal temperature (1°C difference), as in a water cloud with visual range of the order of ~10 m, and at the top of the cirrus layer, with a radiation temperature difference of 30°C.

Fig. 5
Fig. 5

Flow around falling ice plates and columns, characterized by a Reynolds number, influences their orientation.

Fig. 6
Fig. 6

Reynolds number superimposed on measured fall velocities of different crystal types at surface (1000-mbar) and cirrus (200-mbar) levels. Fall velocities from data in Ref. 7. mb, millibars.

Fig. 7
Fig. 7

Ice crystal habit as influenced by growth, temperature, supersaturation, and crystal fall velocity. For growth well below water saturation, defective and twinned crystal structures may influence growth habit and angles.

Fig. 8
Fig. 8

Transition of a plate to dendrite as ventilation is increased (laboratory study).

Fig. 9
Fig. 9

Replica of solid and hollow columns (arrowed) grown under lower and higher supersaturation by seeding a supercooled cloud at −5°C in the laboratory with liquid N2. Solid crystals grew under condition of lower supersaturation than the hollow column, as determined by turbulent growth conditions in the cloud.

Fig. 10
Fig. 10

Surface molecular structure of ice crystals leading to no growth (1, 2), growth only at moderate supersaturation (3), growth at low supersaturations (4), or growth at all supersaturations (5).

Plate I
Plate I

(John Hallett, p. 581.) Interference colors reveal an ice crystal growing by nonthickening steps (~0.05 μm thick) nucleated at the edge of the large crystal. Ice growing epitaxially on covellite (CuS).

Plate II
Plate II

(John Hallett, p. 581.) Interference colors in crystals nucleated by dry ice reveal the presence of thin uniform parallel plates. Irregularity in the trajectory results from Brownian motion.

Plate III
Plate III

(John Hallett, p. 581.) 22° halo produced by crystals shown in Fig. 9. Individual crystals give specific colors as their orientation passes near minimum deviation.

Plate IV
Plate IV

(John Hallett, p. 581.) Comparison of optical effects in a natural ice cloud (a) and in a seeded supercooled fog (b, c, d) show orientation effects and different color intensities. (a) A sun dog produced by natural ice, with intense color. (b, c, d) Less intense halos (22°, 45°), sun dogs, and upper arcs resulting from dry-ice seeding in a supercooled fog at temperatures near −5°C (b and c, 30 min; d, 1 h after seeding). Surface observations showed earlier crystals to be stepped and to contain hollow cavities.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 4 π r 2 d Q d t = 4 π K a r 4 π r 2 [ 1 + 0.27 ( 2 r U ν ) 1 / 2 ] ( T s - T a ) ,
ɛ σ ( T s 4 - T 4 ) ,
1 r K a σ = [ 1 + 0.27 ( 2 r U ν ) 1 / 2 ] 1 T 3 ( T s - T a ) ( T s - T ) .
d Q d t = 4 π r K a ( T s - T )             ( heat )
d m d t = 4 π r D ( ρ s - ρ )             ( mass ) ,
L v d m d t = d Q d t ,
T s - T ρ s - ρ = L v D K a .

Metrics