Abstract

Even the highest contrast sensitivities that humans can achieve for the detection of targets on uniform fields fall far short of ideal values. Recent theoretical formulations have attributed departures from ideal performance to two factors—the existence of internal noise within the observer and suboptimal stimulus information sampling by the observer. It has been postulated that the contributions of these two factors can be evaluated separately by measuring contrast-detection thresholds as a function of the level of externally added visual noise. We wished to determine whether a similar analysis could be applied to contrast discrimination and whether variation of the increment threshold with pedestal contrast is due to changes in internal noise or sampling efficiency. We measured contrast-increment thresholds as a function of noise spectral density for near-threshold and suprathreshold pedestal contrasts. The experiments were conducted separately for static and dynamic noise. Our findings indicate that the same formulation can be applied to contrast discrimination and that changes in the estimated values of internal noise, rather than changes in sampling efficiency, play the major role in determining properties of contrast discrimination. Implications for models of contrast coding in vision are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription