Abstract

A method to solve the phase-retrieval problem from two intensities observed at the Fourier transform of an object function in one dimension is proposed. This method involves the solution of the linear equations consisting of the data of two intensities, obtained with and without an exponential filter at the object plane, and unknown coefficients in the Fourier series expansion of phase. There is no need to treat the nonlinear equation for zero location in the complex plane. The usefulness of the method is shown in computer simulation studies of the reconstruction of the one-dimensional phase object from the observable moduli at the Fourier-transform plane of the object.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription