Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spatiotemporal statistics of the turbulent piston-removed phase and Zernike coefficients for two distinct beams

Not Accessible

Your library or personal account may give you access

Abstract

In the context of adaptive optics for astronomy, one can rely on the statistics of the turbulent phase to assess a part of the system’s performance. Temporal statistics with one source and spatial statistics with two sources are well known and widely used for classical adaptive optics systems. A more general framework, including both spatial and temporal statistics, can be useful for analysis of the existing systems and to support the design of future ones. In this paper, we propose an expression of the temporal cross power spectral densities of turbulent phases in two distinct beams, which is from two different sources to two different apertures. We consider the phase either as it is, without a piston, or as its decomposition on Zernike modes. The general formulas allow coverage of a wide variety of configurations, from single-aperture to interferometric telescopes equipped with adaptive optics, with the possibility to consider apertures of different sizes and/or sources at a finite distance. The presented approach should lead to similar results with respect to existing methods in the Fourier domain, but it is focused on temporal frequencies rather than spatial ones, which might be convenient for some aspects such as control optimization. To illustrate this framework with a simple application, we demonstrate that the wavefront residual due to the anisoplanatism error in a single-conjugated adaptive optics system is overestimated when it is computed from covariances without taking into account the temporal filtering of the adaptive optics loop. We also show this overestimation in the case of a small-baseline interferometer, for which the two beams are significantly correlated.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Temporal properties of the Zernike expansion coefficients of turbulence-induced phase aberrations for aperture and source motion

Matthew R. Whiteley, Michael C. Roggemann, and Byron M. Welsh
J. Opt. Soc. Am. A 15(4) 993-1005 (1998)

Phase estimation at the point-ahead angle for AO pre-compensated ground to GEO satellite telecoms

Perrine Lognoné, Jean-Marc Conan, Ghaya Rekaya, and Nicolas Védrenne
Opt. Express 31(3) 3441-3458 (2023)

Data Availability

No data were generated or analyzed in the presented research.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved