Abstract

Recently, compared with acoustic and radio methods, underwater optical wireless communications has been considered as a high-speed and high-bandwidth transmitting method at a lower cost. Absorption, scattering, and optical turbulence are three destructive phenomena that affect the performance of underwater optical communication systems. In this work, we use computer simulations to mimic the statistical behavior of underwater media employing the Monte Carlo method. Our simulation results for optical turbulence are in good agreement with the lognormal probability density function, which describes weak turbulence well, and they deviate as the turbulence moves away from weak. By considering the combined effect of absorption, scattering, and turbulence (AST) phenomena, we obtain the underwater channel’s impulse response (IR). We demonstrate that there is no noticeable difference between the mean of ensemble IRs of the AST channel and the IR of the channel when turbulence is not taken into account. Moreover, our results predict that tripling the coastal link length from 10 to 30 m increases the average variance of sample IRs of the AST channel from their ensemble average by more than five times.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation

Zahra Vali, Asghar Gholami, Zabih Ghassemlooy, David G. Michelson, Masood Omoomi, and Hamed Noori
J. Opt. Soc. Am. A 34(7) 1187-1193 (2017)

Impulse response modeling for underwater optical wireless channels

Yiming Li, Mark S. Leeson, and Xiaofeng Li
Appl. Opt. 57(17) 4815-4823 (2018)

On the scattering-induced fading for optical wireless links through seawater: statistical characterization and its applications

Pedro Salcedo-Serrano, Rubén Boluda-Ruiz, José María Garrido-Balsells, and Antonio García-Zambrana
Opt. Express 29(23) 37101-37116 (2021)

References

  • View by:

  1. H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
    [Crossref]
  2. M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
    [Crossref]
  3. M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
    [Crossref]
  4. F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
    [Crossref]
  5. M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
    [Crossref]
  6. Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
    [Crossref]
  7. J. H. Smart, “Underwater optical communications systems. Part 1: variability of water optical parameters,” IEEE Military Communications Conference, Atlantic City, New Jersey, October2005, Vol. 2, pp. 1140–1146.
  8. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
    [Crossref]
  9. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
    [Crossref]
  10. E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
    [Crossref]
  11. J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
    [Crossref]
  12. A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
    [Crossref]
  13. C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.
  14. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
    [Crossref]
  15. J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
    [Crossref]
  16. C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
    [Crossref]
  17. W. Cox, “Simulation, modeling, and design of underwater optical communication systems,” Ph.D. dissertation (North Carolina State University, 2012).
  18. S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
    [Crossref]
  19. Y. Li, M. S. Leeson, and X. Li, “Impulse response modelling for underwater optical wireless channels,” Appl. Opt. 57, 4815–4823 (2018).
    [Crossref]
  20. R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
    [Crossref]
  21. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  22. L. Wang, S. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep. (Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, 1995).
  23. W. Liu, Z. Xu, and L. Yang, “SIMO detection schemes for underwater optical wireless communication under turbulence,” Photon. Res. 3, 48–53 (2015).
    [Crossref]
  24. Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Am. A 34, 1187–1193 (2017).
    [Crossref]
  25. J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
    [Crossref]
  26. T. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripts Institution of Oceanography Visibility Laboratory, 1972).
  27. http://ferrari.mit.edu/research/ocean-dynamics/ocean-turbulence/ Accessed on: December 25, 2020.
  28. A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
    [Crossref]
  29. N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
    [Crossref]
  30. F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
    [Crossref]
  31. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  32. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
    [Crossref]
  33. S. D. Lyke, “Statistics of the received power for free space optical channels,” M.Sc. thesis (Michigan Technological University,2010).
  34. M. Beason, L. Andrews, and S. Gladysz, Statistical Comparison of Probability Models of Intensity Fluctuation (SPIE, 2019).
  35. H. Gercekcioglu, “Bit error rate of focused Gaussian beams in weak oceanic turbulence,” J. Opt. Soc. Am. A 31, 1963–1968 (2014).
    [Crossref]

2020 (4)

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

2019 (2)

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

2018 (1)

2017 (5)

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
[Crossref]

M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
[Crossref]

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
[Crossref]

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Z. Vali, A. Gholami, Z. Ghassemlooy, D. G. Michelson, M. Omoomi, and H. Noori, “Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation,” J. Opt. Soc. Am. A 34, 1187–1193 (2017).
[Crossref]

2016 (2)

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
[Crossref]

2015 (2)

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
[Crossref]

W. Liu, Z. Xu, and L. Yang, “SIMO detection schemes for underwater optical wireless communication under turbulence,” Photon. Res. 3, 48–53 (2015).
[Crossref]

2014 (2)

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
[Crossref]

H. Gercekcioglu, “Bit error rate of focused Gaussian beams in weak oceanic turbulence,” J. Opt. Soc. Am. A 31, 1963–1968 (2014).
[Crossref]

2013 (1)

2012 (2)

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

2009 (1)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

2008 (2)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
[Crossref]

2007 (1)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
[Crossref]

Akhoundi, F.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
[Crossref]

M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
[Crossref]

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
[Crossref]

Al-Naffouri, T. Y.

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

Alouini, M.-S.

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

Anabalón, V.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Andrews, L.

M. Beason, L. Andrews, and S. Gladysz, Statistical Comparison of Probability Models of Intensity Fluctuation (SPIE, 2019).

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

Ayoub, F.

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

Beason, M.

M. Beason, L. Andrews, and S. Gladysz, Statistical Comparison of Probability Models of Intensity Fluctuation (SPIE, 2019).

Boluda-Ruiz, R.

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

Bouanani, F. E.

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

Bourennane, S.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

Castillo-Vázquez, B.

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

Celik, A.

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

Chen, G.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Chizari, A.

M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
[Crossref]

Corredor-Acosta, A.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Cox, W.

W. Cox, “Simulation, modeling, and design of underwater optical communication systems,” Ph.D. dissertation (North Carolina State University, 2012).

Deng, H.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Ding, H.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Dong, F.

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Dong, Y.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
[Crossref]

Duan, Z.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Gabriel, C.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

García-Zambrana, A.

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

Gercekcioglu, H.

Ghassemlooy, Z.

Gholami, A.

Gladysz, S.

M. Beason, L. Andrews, and S. Gladysz, Statistical Comparison of Probability Models of Intensity Fluctuation (SPIE, 2019).

Guo, Y.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Hanson, F.

He, F.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Hormazabal, S.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Huang, W.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Illi, E.

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

Jacques, S.

L. Wang, S. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep. (Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, 1995).

Jamali, M. V.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
[Crossref]

M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
[Crossref]

M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
[Crossref]

Jaruwatanadilok, S.

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

Jiang, D.

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
[Crossref]

Khalighi, M.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

Kienle, A.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
[Crossref]

Kou, L.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Leeson, M. S.

Leon, P.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

Li, J.

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

Li, X.

Li, Y.

Liao, Q.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Liemert, A.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
[Crossref]

Liu, W.

Lyke, S. D.

S. D. Lyke, “Statistics of the received power for free space optical channels,” M.Sc. thesis (Michigan Technological University,2010).

Ma, Y.

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

Majumdar, A. K.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Mao, Y.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Michelson, D. G.

Morales, C. E.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
[Crossref]

Noori, H.

Omoomi, M.

Park, K.-H.

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

Petzold, T.

T. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripts Institution of Oceanography Visibility Laboratory, 1972).

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Qaraqe, K.

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

Radic, S.

Reitzle, D.

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
[Crossref]

Rico-Pinazo, P.

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

Rigaud, V.

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5, 1–12 (2013).
[Crossref]

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

Rodríguez-Santana, A.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Sadler, B. M.

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Saeed, N.

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

Salehi, J. A.

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
[Crossref]

M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
[Crossref]

M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
[Crossref]

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
[Crossref]

Smart, J. H.

J. H. Smart, “Underwater optical communications systems. Part 1: variability of water optical parameters,” IEEE Military Communications Conference, Atlantic City, New Jersey, October2005, Vol. 2, pp. 1140–1146.

Tang, S.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
[Crossref]

Tashakori, A.

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
[Crossref]

Uysal, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
[Crossref]

Valencia, L. P.

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

Vali, Z.

Wang, H.

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

Wang, L.

L. Wang, S. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep. (Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, 1995).

Wang, Y.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Wu, X.

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

Xu, L.

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Xu, Z.

W. Liu, Z. Xu, and L. Yang, “SIMO detection schemes for underwater optical wireless communication under turbulence,” Photon. Res. 3, 48–53 (2015).
[Crossref]

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

Yang, L.

Yang, Y.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Zhang, J.

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Zhang, T.

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Zhang, X.

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
[Crossref]

Zheng, L.

L. Wang, S. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep. (Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, 1995).

Zhou, B.

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

Zhou, Q.

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

Ad Hoc Netw. (1)

N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Underwater optical wireless communications, networking, and localization: a survey,” Ad Hoc Netw. 94, 101935 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Sci. (1)

Y. Mao, X. Wu, W. Huang, Q. Liao, H. Deng, Y. Wang, and Y. Guo, “Monte Carlo-based performance analysis for underwater continuous-variable quantum key distribution,” Appl. Sci. 10, 5744 (2020).
[Crossref]

IEEE Access (2)

E. Illi, F. E. Bouanani, K.-H. Park, F. Ayoub, and M.-S. Alouini, “An improved accurate solver for the time-dependent RTE in underwater optical wireless communications,” IEEE Access 7, 96478–96494 (2019).
[Crossref]

H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544 (2009).
[Crossref]

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620–1627 (2008).
[Crossref]

IEEE Photon. J. (1)

R. Boluda-Ruiz, P. Rico-Pinazo, B. Castillo-Vázquez, A. García-Zambrana, and K. Qaraqe, “Impulse response modeling of underwater optical scattering channels for wireless communication,” IEEE Photon. J. 12, 7904414 (2020).
[Crossref]

IEEE Photon. Techno. Lett. (1)

M. V. Jamali, A. Chizari, and J. A. Salehi, “Performance analysis of multi-hop underwater wireless optical communication systems,” IEEE Photon. Techno. Lett. 29, 462–465 (2017).
[Crossref]

IEEE Trans. Commun. (4)

M. V. Jamali, F. Akhoundi, and J. A. Salehi, “Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel,” IEEE Trans. Commun. 15, 4104–4116 (2016).
[Crossref]

F. Akhoundi, J. A. Salehi, and A. Tashakori, “Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts,” IEEE Trans. Commun. 63, 882–891 (2015).
[Crossref]

M. V. Jamali, J. A. Salehi, and F. Akhoundi, “Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme,” IEEE Trans. Commun. 65, 1176–1192 (2017).
[Crossref]

S. Tang, Y. Dong, and X. Zhang, “Impulse response modeling for underwater wireless optical communication links,” IEEE Trans. Commun. 62, 226–234 (2014).
[Crossref]

IEEE Trans. Wireless Commun. (1)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Wireless Commun. 6, 2813–2819 (2007).
[Crossref]

J. Geophys. Res. (1)

A. Corredor-Acosta, C. E. Morales, A. Rodríguez-Santana, V. Anabalón, L. P. Valencia, and S. Hormazabal, “The influence of diapycnal nutrient fluxes on phytoplankton size distribution in an area of intense mesoscale and submesoscale activity off Concepción, Chile,” J. Geophys. Res. 125, 1–20 (2020).
[Crossref]

J. Opt. (1)

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Channel capacity study of underwater wireless optical communications links based on Monte Carlo simulation,” J. Opt. 14, 015403 (2012).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. Zhang, L. Kou, Y. Yang, F. He, and Z. Duan, “Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence,” Opt. Commun. 475, 126214 (2020).
[Crossref]

Opt. Eng. (1)

J. Li, Y. Ma, Q. Zhou, B. Zhou, and H. Wang, “Monte Carlo study on pulse response of underwater optical channel,” Opt. Eng. 51, 066001 (2012).
[Crossref]

Photon. Res. (1)

Prog. Electromagn. Res. M (1)

F. Dong, L. Xu, D. Jiang, and T. Zhang, “Monte-Carlo-based impulse response modeling for underwater wireless optical communication,” Prog. Electromagn. Res. M 54, 137–144 (2017).
[Crossref]

Sci. Rep. (1)

A. Liemert, D. Reitzle, and A. Kienle, “Analytical solutions of the radiative transport equation for turbid and fluorescent layered media,” Sci. Rep. 7, 3819 (2017).
[Crossref]

Other (10)

C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Channel modeling for underwater optical communication,” in Proceedings, IEEE Workshop on Optical Wireless Communications, Globecom Conference (2011), pp. 833–837.

J. H. Smart, “Underwater optical communications systems. Part 1: variability of water optical parameters,” IEEE Military Communications Conference, Atlantic City, New Jersey, October2005, Vol. 2, pp. 1140–1146.

W. Cox, “Simulation, modeling, and design of underwater optical communication systems,” Ph.D. dissertation (North Carolina State University, 2012).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

S. D. Lyke, “Statistics of the received power for free space optical channels,” M.Sc. thesis (Michigan Technological University,2010).

M. Beason, L. Andrews, and S. Gladysz, Statistical Comparison of Probability Models of Intensity Fluctuation (SPIE, 2019).

T. Petzold, “Volume scattering functions for selected ocean waters,” SIO Ref. 72-78 (Scripts Institution of Oceanography Visibility Laboratory, 1972).

http://ferrari.mit.edu/research/ocean-dynamics/ocean-turbulence/ Accessed on: December 25, 2020.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).

L. Wang, S. Jacques, and L. Zheng, “MCML, Monte Carlo modeling of light transport in multi-layered tissues,” Tech. Rep. (Laser Biology Research Laboratory, University of Texas, M.D. Anderson Cancer Center, 1995).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Two-dimensional demonstration of absorption and scattering phenomena (big yellow circles: particles, small green circles: photons).
Fig. 2.
Fig. 2. Mie scattering for an incident beam (entered from left).
Fig. 3.
Fig. 3. Example of the assumed shape of the boundary of turbulent cells along the propagation path.
Fig. 4.
Fig. 4. Illustration of directional vector in terms of the sum of directional cosine vectors.
Fig. 5.
Fig. 5. Possible steps for an emitted photon with coordinate systems.
Fig. 6.
Fig. 6. Interaction of photon with two successive boundaries with different curvatures.
Fig. 7.
Fig. 7. Possible path of a received photon in a turbulent channel in the presence of absorption and scattering, ${\rm FOV}= 90^ \circ$.
Fig. 8.
Fig. 8. MC simulation of IR in the presence of absorption and scattering phenomena, harbor water, for $L = 10\,\,\rm m$ and $L = 12\,\,\rm m$.
Fig. 9.
Fig. 9. MC simulation of IR in the presence of absorption and scattering phenomena, coastal water, $L = 30\,\,\rm m$.
Fig. 10.
Fig. 10. Comparison of pdf-like simulation data and lognormal pdf for link length $L = 100\,\,\rm m$ in two turbulent conditions. (a) Weak, SI = 0.1429, (b) near-moderate, SI = 0.405, and (c) near-moderate, SI = 0.788.
Fig. 11.
Fig. 11. Convergence demonstration of the mean IR of the AST channel and the IR of the AS channel in coastal and harbor waters.
Fig. 12.
Fig. 12. Scatter plot of AST channel IRs with $\Delta n = 0.0001$ to highlight the effect of turbulence for coastal links of $L = 10\,\,\rm m$ and $L = 20\,\,\rm m$.

Tables (2)

Tables Icon

Table 1. Typical Coefficients for Different Water Types at λ = 520 n m (Green Light) [26]

Tables Icon

Table 2. Turbulence Simulation Parameters

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

2 π 0 π β ( θ ) sin θ d θ = 1.
β ( θ ) = ( 1 g 2 ) 4 π ( 1 + g 2 2 g cos θ ) 3 2 .
( μ x = sin θ 1 μ z 2 ( μ x μ z cos φ μ y sin φ ) + μ x cos θ , μ y = sin θ 1 μ z 2 ( μ y μ z cos φ + μ x sin φ ) + μ y cos θ , μ z = sin θ cos φ 1 μ z 2 + μ z cos θ .
[ μ x μ y μ z ] = [ sin θ cos φ sin θ sin φ cos θ | cos θ | cos θ ] = [ sin θ cos φ sin θ sin φ sign ( μ z ) cos θ ] .
cos θ = 1 2 g [ 1 + g 2 ( 1 g 2 1 g + 2 g ξ θ ) 2 ] ,
W i + 1 = ( 1 a c ) W i = b c W i .
{ x = x + μ x Δ s , y = y + μ y Δ s , z = z + μ z Δ s .
( μ x μ z ( L z ) + x ) 2 + ( μ y μ z ( L z ) + y ) 2 < ( D 2 ) 2 ,
n i = ( sin θ i cos φ i , sin θ i sin φ i , cos θ i ) .
L i + 1 × n r = n i n i + 1 L i × n r ,
L i = ( μ x , μ y , μ z ) = ( cos θ x i , cos θ y i , cos θ z i ) ,
L i + 1 = ( μ x , μ y , μ z ) = ( cos θ x i , cos θ y i , cos θ z i ) .
n r = ( a r , b r , c r ) = O i X c R i = ( x c x 0 R i , y c y 0 R i , z c z 0 R i ) ,
n i = ( a , b , c ) = O i P i R i = ( 0 x 0 R i , 0 y 0 R i , z i z 0 R i ) ,
O i = ( x 0 , y 0 , z 0 ) = ( a R i , b R i , z i c R i ) .
c r μ y b r μ z = k i ( c r μ y b r μ z ) ,
c r μ x a r μ z = k i ( c r μ x a r μ z ) ,
b r μ x a r μ y = k i ( b r μ x a r μ y ) ,
μ y = b r μ x k i ( b r μ x a r μ y ) a r ,
μ z = c r μ x k i ( c r μ x a r μ z ) a r .
μ x 2 + 2 k i [ a r ( L i n r ) μ x ] μ x + k i 2 [ μ x 2 2 [ a r ( L i n r ) ] μ x + a r 2 ] a r 2 = 0 ,
σ I 2 = I 2 I 2 I 2 = I 2 I 2 1 ,
P ( I ) = 1 I σ I 2 π exp { [ ln I I 0 + 1 2 σ I 2 ] 2 2 σ I 2 } , I > 0 ,
R i = ( 1 ) t | ln ( q ) | ,

Metrics