Abstract

Simultaneous contrast enhancement and speckle suppression in optical coherence tomography (OCT) are of great significance to medical diagnosis. In this paper, we propose a selective weighted variational enhancement (SWVE) model to enhance the structural parts of OCT images, and then present a shape-preserving fourth-order-oriented partial differential equations (SP-FOOPDE) algorithm to suppress speckle noise. To be specific, in the SWVE model, we first introduce the fast and robust fuzzy c-means clustering (FRFCM) algorithm to generate masks based on the gray-level histograms of the reconstructed OCT images and utilize the masks to distinguish the structural parts from the background. Then the retinex-based weighted variational model, combined with gamma correction, is adopted to enhance the structural parts by multiplying the estimated reflectance with the adjusted illumination. In the despeckling process, we present an SP-FOOPDE algorithm with the fidelity term modified by the shearlet transform to strike a splendid balance between noise suppression and structural preservation. Experimental results show that the proposed method performs well in contrast enhancement and speckle suppression, with better quality metrics of the MSE, PSNR, CNR, ENL, EKI, and ${\nu}$ and better noise immunity than the related method. Moreover, the application to the segmentation preprocessing exhibits that the retinal structure of the OCT images processed by the proposed method can be completely segmented.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Double-path parallel convolutional neural network for removing speckle noise in different types of OCT images

Zhengjie Shen, Manhui Xi, Chen Tang, Min Xu, and Zhenkun Lei
Appl. Opt. 60(15) 4345-4355 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription