Abstract

We present a preliminary experimental demonstration of an acousto-optic frequency shifted (AOFS) comb laser-based micro-Doppler detection system for moving object identification. The AOFS comb laser was constructed by successively frequency shifting a single-frequency seed laser at 1063.8 nm using an acousto-optic modulator in an amplified fiber loop, which resulted in a stable pulse output with a pulse repetition rate around 150 MHz and pulse duration of about 200 ps. The AOFS comb pulse was amplified and then directed through a fiber circulator first and then an optical lens onto a moving object, which featured both linear translation and rotation. The micro-Doppler signal of the rotation was derived from the heterodyne detection of the pulse echo comb laser and the continuous-wave single-frequency local laser. It is believed that such an AOFS comb laser-based sensing system is of great potential for micro-Doppler detection of high-speed targets owing to its long-term stability and compactness.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Research on heterodyne detection of a mode-locked pulse laser based on an acousto-optic frequency shift

Yan Bai, Deming Ren, Weijiang Zhao, Liming Qian, Zhenlei Chen, and Yan Liu
Appl. Opt. 49(20) 4018-4023 (2010)

Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser

Yan Bai, Deming Ren, Weijiang Zhao, Yanchen Qu, Liming Qian, and Zhenlei Chen
Opt. Express 20(2) 764-768 (2012)

Ranging and velocimetry measurements by phase-based MTCW lidar

Mustafa Mert Bayer and Ozdal Boyraz
Opt. Express 29(9) 13552-13562 (2021)

References

  • View by:
  • |
  • |
  • |

  1. V. C. Chen, “Analysis of radar micro-Doppler signature with time-frequency transform,” in 10th IEEE Workshop on Statistical Signal and Array Processing (2000), pp. 463–466.
  2. V. C. Chen and R. Lipps, “Time-frequency signatures of micro-Doppler phenomenon for feature extraction,” Proc. SPIE 4056, 220–226 (2000).
    [Crossref]
  3. Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
    [Crossref]
  4. A. G. Stove and S. R. Sykes, “A Doppler-based automatic target classifier for a battlefield surveillance radar,” in RADAR 2002 Conference (2002), Vol. 490, pp. 419–423.
  5. Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
    [Crossref]
  6. S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
    [Crossref]
  7. J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
    [Crossref]
  8. P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
    [Crossref]
  9. P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser—theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).
    [Crossref]
  10. S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
    [Crossref]
  11. H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
    [Crossref]
  12. K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
    [Crossref]
  13. L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
    [Crossref]
  14. V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
    [Crossref]
  15. M. Nikodem and K. Abramski, “Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique,” Opt. Commun. 283, 2202–2205 (2010).
    [Crossref]
  16. H. Y. Ryu, H. S. Moon, and H. S. Suh, “Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding,” Opt. Express 15, 11396–11401 (2007).
    [Crossref]
  17. N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
    [Crossref]
  18. D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
    [Crossref]
  19. H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
    [Crossref]
  20. V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
    [Crossref]
  21. H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
    [Crossref]

2020 (1)

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

2019 (2)

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

2015 (1)

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

2014 (1)

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

2013 (3)

Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

2012 (1)

Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
[Crossref]

2011 (1)

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

2010 (1)

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique,” Opt. Commun. 283, 2202–2205 (2010).
[Crossref]

2007 (1)

2006 (1)

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

2004 (1)

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
[Crossref]

2000 (2)

V. C. Chen and R. Lipps, “Time-frequency signatures of micro-Doppler phenomenon for feature extraction,” Proc. SPIE 4056, 220–226 (2000).
[Crossref]

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

1998 (1)

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

1993 (1)

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

1990 (1)

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser—theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).
[Crossref]

Abramski, K.

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique,” Opt. Commun. 283, 2202–2205 (2010).
[Crossref]

Balle, S.

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

Bergmann, K.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
[Crossref]

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

Bonnet, G.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

Bruns, D. L.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

Cao, Z. H.

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Chen, H. K.

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

Chen, V. C.

V. C. Chen and R. Lipps, “Time-frequency signatures of micro-Doppler phenomenon for feature extraction,” Proc. SPIE 4056, 220–226 (2000).
[Crossref]

V. C. Chen, “Analysis of radar micro-Doppler signature with time-frequency transform,” in 10th IEEE Workshop on Statistical Signal and Array Processing (2000), pp. 463–466.

Clement, J.

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

de Chatellus, H. G.

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Djevarhidjian, L.

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

Du, L.

Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
[Crossref]

Duran, V.

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

Fathy, A. E.

Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
[Crossref]

Fernandez Pousa, C. R.

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

Gatt, P.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

Glastre, W.

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Hale, P. D.

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser—theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).
[Crossref]

Hara, T.

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

Henderson, S. W.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

Hugon, O.

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Ito, H.

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

Jacquin, O.

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Kanagaraj, N.

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

Khodakovskyy, V. M.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

Kowalski, F. V.

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser—theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).
[Crossref]

Lacot, E.

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

H. G. de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Li, Y. B.

Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
[Crossref]

Li, Y. Y.

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

Lipps, R.

V. C. Chen and R. Lipps, “Time-frequency signatures of micro-Doppler phenomenon for feature extraction,” Proc. SPIE 4056, 220–226 (2000).
[Crossref]

Littler, I. C. M.

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

Liu, H. W.

Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
[Crossref]

Liu, Q. H.

Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
[Crossref]

Marklof, J.

Miyahara, T.

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

Moon, H. S.

Nakamura, K.

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

Nikodem, M.

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique,” Opt. Commun. 283, 2202–2205 (2010).
[Crossref]

Ogurtsov, V. V.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

Peng, S. P.

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

Ryu, H. Y.

Schnebelin, C.

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

N. Kanagaraj, L. Djevarhidjian, V. Duran, C. Schnebelin, and H. G. de Chatellus, “Optimization of acousto-optic optical frequency combs,” Opt. Express 27, 14842–14852 (2019).
[Crossref]

Shore, B. W.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
[Crossref]

Stove, A. G.

A. G. Stove and S. R. Sykes, “A Doppler-based automatic target classifier for a battlefield surveillance radar,” in RADAR 2002 Conference (2002), Vol. 490, pp. 419–423.

Suh, H. S.

Sun, T. F.

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Sun, Y.

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Sykes, S. R.

A. G. Stove and S. R. Sykes, “A Doppler-based automatic target classifier for a battlefield surveillance radar,” in RADAR 2002 Conference (2002), Vol. 490, pp. 419–423.

Thomson, J. A. L.

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

Wang, Y. Z.

Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
[Crossref]

Wu, S. S.

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

Yang, H. Z.

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

Yatsenko, L. P.

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
[Crossref]

Yoshida, M.

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

Zhang, D. H.

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

Zhang, H. Y.

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

Zhang, J.

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Zhao, C. M.

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

Zheng, T. T.

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Zheng, Z.

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser—theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).
[Crossref]

IEEE Photon. Technol. Lett. (2)

V. Duran, H. G. de Chatellus, C. Schnebelin, N. Kanagaraj, L. Djevarhidjian, J. Clement, and C. R. Fernandez Pousa, “Optical frequency combs generated by acousto-optic frequency-shifting loops,” IEEE Photon. Technol. Lett. 31, 1878–1881 (2019).
[Crossref]

K. Nakamura, T. Miyahara, M. Yoshida, T. Hara, and H. Ito, “A new technique of optical ranging by a frequency-shifted feedback laser,” IEEE Photon. Technol. Lett. 10, 1772–1774 (1998).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

Y. B. Li, L. Du, and H. W. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens. 51, 3001–3013 (2013).
[Crossref]

Y. Z. Wang, Q. H. Liu, and A. E. Fathy, “CW and pulse-Doppler radar processing based on FPGA for human sensing applications,” IEEE Trans. Geosci. Remote Sens. 51, 3097–3107 (2012).
[Crossref]

Infrared Phys. Technol. (1)

J. Zhang, Y. Sun, Z. H. Cao, T. F. Sun, and T. T. Zheng, “Detection on micro-Doppler effect based on 1550 nm laser coherent radar,” Infrared Phys. Technol. 62, 34–38 (2014).
[Crossref]

Opt. Commun. (5)

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).
[Crossref]

V. V. Ogurtsov, L. P. Yatsenko, V. M. Khodakovskyy, B. W. Shore, G. Bonnet, and K. Bergmann, “Experimental characterization of an Yb3+-doped fiber ring laser with frequency-shifted feedback,” Opt. Commun. 266, 627–637 (2006).
[Crossref]

M. Nikodem and K. Abramski, “Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique,” Opt. Commun. 283, 2202–2205 (2010).
[Crossref]

S. Balle, I. C. M. Littler, K. Bergmann, and F. V. Kowalski, “Frequency shifted feedback dye-laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[Crossref]

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “The hypothesis of the moving comb in frequency shifted feedback lasers,” Opt. Commun. 284, 4965–4970 (2011).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

S. P. Peng, S. S. Wu, Y. Y. Li, and H. K. Chen, “All-fiber monostatic pulsed laser Doppler vibrometer: a digital signal processing method to eliminate cochannel interference,” Opt. Laser Technol. 124, 105952 (2020).
[Crossref]

Phys. Rev. A (1)

H. G. de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

Proc. SPIE (3)

P. Gatt, S. W. Henderson, J. A. L. Thomson, and D. L. Bruns, “Micro-Doppler lidar signals and noise mechanisms: theory and experiment,” Proc. SPIE 4035, 422–435 (2000).
[Crossref]

V. C. Chen and R. Lipps, “Time-frequency signatures of micro-Doppler phenomenon for feature extraction,” Proc. SPIE 4056, 220–226 (2000).
[Crossref]

D. H. Zhang, H. Y. Zhang, Z. Zheng, H. Z. Yang, and C. M. Zhao, “The influence of laser spot size on the micro-Doppler spectrum,” Proc. SPIE 9623, 962305 (2015).
[Crossref]

Other (2)

V. C. Chen, “Analysis of radar micro-Doppler signature with time-frequency transform,” in 10th IEEE Workshop on Statistical Signal and Array Processing (2000), pp. 463–466.

A. G. Stove and S. R. Sykes, “A Doppler-based automatic target classifier for a battlefield surveillance radar,” in RADAR 2002 Conference (2002), Vol. 490, pp. 419–423.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic of a typical AOFS laser. AOM, acousto-optic modulator; WDM, wavelength division multiplexer; ISO, isolator; LD, laser diode.
Fig. 2.
Fig. 2. Optical spectrum of probe light and echo light. (a) Probe light (positive frequency shift); (b) echo light when target is moving toward the detector; (c) echo light when target is moving away from the detector. Red line: seed light also acting as the local reference.
Fig. 3.
Fig. 3. Simulations of the heterodyne detection of the AOFS echo signal with local single frequency light. Black pattern: intensity and RF spectrum of the beat signal when target stands still. Blue pattern: intensity and RF spectrum of the beat signal when the target moves away from the detector. Red pattern: intensity and RF spectrum of the beat signal when the target moves toward the detector.
Fig. 4.
Fig. 4. Schematic diagram of the comb laser-based system for micro-motion detection for (a) object larger than the laser beam spot ( ${L}\; \gt \;{2}{R}$ ) and (b) object smaller than the laser beam spot.
Fig. 5.
Fig. 5. Optical spectrum of probe light and echo light with negative and positive frequency shifts. (a) Optical spectrum of frequency negative shifted AOFS output. (b) Optical spectrum of frequency positive shifted AOFS output. (c) Optical spectrum of the echo signal when the target moves towards the detector. (d) Optical spectrum of the echo signal when the target moves away from the detector. Red spectral line: frequency of the local light.
Fig. 6.
Fig. 6. Schematic diagram of the AOFS comb laser. FBG, fiber Bragg grating.
Fig. 7.
Fig. 7. Schematic diagram of the lidar system.
Fig. 8.
Fig. 8. Loop output under different modulation frequencies (cavity length fixed). (a)  ${{\boldsymbol f}_{\boldsymbol s}} = 151.069\,\,\rm MHz$ ; (b)  ${{\boldsymbol f}_{\boldsymbol s}} = 151.169\,\,\rm MHz$ ; (c)  ${{\boldsymbol f}_{\boldsymbol s}} = 151.269\,\,\rm MHz$ ; (d)  ${{\boldsymbol f}_{\boldsymbol s}} = 151.369\,\,\rm MHz$ ; (e)  ${{\boldsymbol f}_{\boldsymbol s}} = 151.029\,\,\rm MHz$ .
Fig. 9.
Fig. 9. RF spectrum of the output. The inset is an enlarged view of the first spectrum.
Fig. 10.
Fig. 10. Spectrum of the output. (a) Spectrum broadening under MWS mode. Blue line: without pump. Green line: with 77 mW pump power. Red line: with 106 mW pump power. (b) Spectrum under MWS and mode-locked mode. Red line: mode-locked mode. Blue line: MWS mode.
Fig. 11.
Fig. 11. RF spectrum under different pump powers. Red pattern: 105 mW pump power. Blue pattern: 155 mW pump power. Green pattern: 205 mW pump power.
Fig. 12.
Fig. 12. RF spectrum of the echo signals under the condition that target moves (a), (b) without rotation and (c), (d) with rotation. Direction: (a), (c) away from the detector and (b), (d) toward the detector.
Fig. 13.
Fig. 13. Measured velocity extracted from the 20 Doppler signals of both the AOFS (red) and CW single-frequency (blue) system.
Fig. 14.
Fig. 14. Micro-Doppler signals obtained from two waveforms with sampling time of 15 ms.
Fig. 15.
Fig. 15. Simulation results of an AOFS-based and a CW-based detection system. (a), (b) Respectively, distribution of intensity in time domain of the two systems after heterodyne interference with the reference light. (c), (d) Respectively, RF spectra obtained by Fourier transformation of the intensity signal.
Fig. 16.
Fig. 16. Beat signal in the low-frequency part of an AOFS-based system. It can be seen that there exist two beat frequencies within one comb frequency interval under certain range.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ f n = ± 2 v c f n ,
f n = ( f 0 + n f s ) ± 2 v c ( f 0 + n f s ) .
f s = f s ± Δ f s ,
Δ f s i d e b a n d = ± 2 v c f 0 .
f d o p p l e r = { ( 1 + 2 v c + 2 ω x c ) f 0 i n t h e u p p e r p a r t ( 1 + 2 v c 2 ω x c ) f 0 i n t h e l o w e r p a r t ,
f b r o a d e n i n g = 4 ω R c f 0 .
f b r o a d e n i n g = 2 ω L c f 0 .