Abstract

All-optical switch and multiple logic gates have been demonstrated using a hybrid-cavity semiconductor laser composed of a square microcavity and a Fabry–Perot cavity experimentally. In this paper, two-section tri-mode rate equations with optical injection terms are proposed and applied to study all-optical logic gates of NOT, NOR, and NAND operations utilizing the hybrid-cavity laser. Steady-state and dynamical characteristics of all-optical multiple logic gates are simulated, taking into account the influence of mode frequency detuning, gain suppression coefficients, mode Q factor, injection energy, and biasing current. All-optical logic NOT, NOR, and NAND gates up to 20, 15, and 20 Gbit/s are obtained numerically with dynamic extinction ratios of over 20, 20, and 10 dB, respectively, which are potential response speeds of the all-optical logic gates based on the hybrid-cavity semiconductor lasers.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function

Yuji Miyoshi, Kensuke Ikeda, Hideaki Tobioka, Takashi Inoue, Shu Namiki, and Ken-ichi Kitayama
Opt. Express 16(4) 2570-2577 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Aleksić, “Analysis of power consumption in future high-capacity network nodes,” J. Opt. Commun. Netw. 1, 245–258 (2009).
    [Crossref]
  2. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  3. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
    [Crossref]
  4. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18, 9961–9966 (2010).
    [Crossref]
  5. J. E. McGeehan, S. Kumar, and A. E. Willner, “All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,” in Conference on Lasers and Electro–Optics (2005), paper CTuX6.
  6. S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255–10260 (2006).
    [Crossref]
  7. K. Chen, J. Hou, Z. Huang, T. Cao, J. Zhang, Y. Yu, and X. Zhang, “All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers,” Opt. Express 23, 3784–3794 (2015).
    [Crossref]
  8. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
    [Crossref]
  9. S. Singh and Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012).
    [Crossref]
  10. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25, 103–108 (2007).
    [Crossref]
  11. G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
    [Crossref]
  12. J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
    [Crossref]
  13. X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
    [Crossref]
  14. A. Kotb, “Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s,” Optik 127, 320–325 (2016).
    [Crossref]
  15. X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs,” Opt. Express 12, 361–366 (2004).
    [Crossref]
  16. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
    [Crossref]
  17. A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
    [Crossref]
  18. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
    [Crossref]
  19. R. Aoki, M. Yamauchi, Y. Kawamura, N. Kobayashi, T. Arakawa, and Y. Kokubun, “Switchable all-optical flip-flop and inverter operations in quantum well microring laser,” J. Lightwave Technol. 38, 3950–3958 (2020).
    [Crossref]
  20. B. R. Singh and S. Rawal, “Photonic-crystal-based all-optical NOT logic gate,” J. Opt. Soc. Am. A 32, 2260–2263 (2015).
    [Crossref]
  21. V. Jandieri, R. Khomeriki, and D. Erni, “Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides,” Opt. Express 26, 19845–19853 (2018).
    [Crossref]
  22. V. Jandieri, R. Khomeriki, T. Onoprishvili, D. H. Werner, J. Berakdar, and D. Erni, “Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides,” Opt. Express 28, 18317–18331 (2020).
    [Crossref]
  23. L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
    [Crossref]
  24. B. Nakarmi, M. Rakib-Uddin, and Y. H. Won, “Realization of all-optical multi-logic functions and a digital adder with input beam power management for multi-input injection locking in a single-mode Fabry-Pérot laser diode,” Opt. Express 19, 14121–14129 (2011).
    [Crossref]
  25. A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
    [Crossref]
  26. A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
    [Crossref]
  27. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
    [Crossref]
  28. A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
    [Crossref]
  29. V. Jandieri, R. Khomeriki, J. Berakdar, and D. Erni, “Theory of soliton propagation in nonlinear photonic crystal waveguides,” Opt. Express 27, 29558–29566 (2019).
    [Crossref]
  30. Y. D. Jeong, Y. H. Won, S. O. Choi, and J. H. Yoon, “Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics,” Opt. Lett. 31, 2586–2588 (2006).
    [Crossref]
  31. X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
    [Crossref]
  32. X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
    [Crossref]
  33. F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
    [Crossref]
  34. J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
    [Crossref]
  35. J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2013).
  36. Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
    [Crossref]
  37. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
    [Crossref]
  38. S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
    [Crossref]
  39. Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
    [Crossref]
  40. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  41. W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
    [Crossref]

2020 (3)

2019 (3)

V. Jandieri, R. Khomeriki, J. Berakdar, and D. Erni, “Theory of soliton propagation in nonlinear photonic crystal waveguides,” Opt. Express 27, 29558–29566 (2019).
[Crossref]

A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

2018 (2)

V. Jandieri, R. Khomeriki, and D. Erni, “Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides,” Opt. Express 26, 19845–19853 (2018).
[Crossref]

A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
[Crossref]

2017 (1)

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

2016 (4)

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

A. Kotb, “Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s,” Optik 127, 320–325 (2016).
[Crossref]

2015 (3)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

K. Chen, J. Hou, Z. Huang, T. Cao, J. Zhang, Y. Yu, and X. Zhang, “All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers,” Opt. Express 23, 3784–3794 (2015).
[Crossref]

B. R. Singh and S. Rawal, “Photonic-crystal-based all-optical NOT logic gate,” J. Opt. Soc. Am. A 32, 2260–2263 (2015).
[Crossref]

2014 (1)

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

2012 (1)

S. Singh and Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012).
[Crossref]

2011 (2)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

B. Nakarmi, M. Rakib-Uddin, and Y. H. Won, “Realization of all-optical multi-logic functions and a digital adder with input beam power management for multi-input injection locking in a single-mode Fabry-Pérot laser diode,” Opt. Express 19, 14121–14129 (2011).
[Crossref]

2010 (3)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18, 9961–9966 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

2009 (1)

2007 (2)

2006 (4)

S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255–10260 (2006).
[Crossref]

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Y. D. Jeong, Y. H. Won, S. O. Choi, and J. H. Yoon, “Tunable single-mode Fabry-Perot laser diode using a built-in external cavity and its modulation characteristics,” Opt. Lett. 31, 2586–2588 (2006).
[Crossref]

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
[Crossref]

2004 (2)

X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs,” Opt. Express 12, 361–366 (2004).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

2003 (1)

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

2001 (1)

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

2000 (1)

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

1999 (1)

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

1997 (1)

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

1991 (1)

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Aleksic, S.

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Andre, J.

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

Aoki, R.

Arakawa, T.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

Becker, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Ben Ezra, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Bennion, I.

Berakdar, J.

Blanco-Redondo, A.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

Bonk, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Cao, T.

Chan, L. Y.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Chen, H.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Chen, K.

Chen, X.

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

Chen, Y. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Choi, S. O.

Chuang, S. L.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

Clausen, A.

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

de Waardt, H.

Demokan, M. S.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Dorren, H. J. S.

Dreschmann, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Du, Y.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

Dutta, N. K.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Eades, D.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

Ebnali-Heidari, M.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Eggleton, B. J.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Ellermeyer, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Elman, B.

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Erni, D.

Faolain, L. O.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Fejer, M. M.

Feng, C.

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Freude, W.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Frey, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Galili, M.

Geluk, E.-J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Grillet, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Guo, C.

A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
[Crossref]

A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
[Crossref]

Guo, W. H.

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

Gurkan, D.

Han, J. Y.

Hao, Y. Z.

J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

Hillerkuss, D.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Hoh, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Hou, J.

Hu, H.

Huang, D.

Huang, Y. Z.

J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

Huang, Z.

Huber, G.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Huebner, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Huo, L.

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

Husko, C.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Jandieri, V.

Jaques, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Jeong, Y. D.

Jeppesen, P.

Jordan, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Kawamura, Y.

Keating, T.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

Khoe, G. D.

Khomeriki, R.

Kleinow, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Kobayashi, N.

Koenig, S.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Kokubun, Y.

Koonen, A. M. J.

Koos, C.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Kotb, A.

A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
[Crossref]

A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
[Crossref]

A. Kotb, “Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s,” Optik 127, 320–325 (2016).
[Crossref]

Koteles, E. S.

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Krauss, T. F.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Kumar, S.

S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255–10260 (2006).
[Crossref]

J. E. McGeehan, S. Kumar, and A. E. Willner, “All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,” in Conference on Lasers and Electro–Optics (2005), paper CTuX6.

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lei, H. B.

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Leuthold, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Li, J.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Li, Z.

Lin, J.

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lipson, M.

Liu, D.

Liu, J. C.

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Liu, Y.

Lou, C.

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

Lovkesh,

S. Singh and Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012).
[Crossref]

Ludwig, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Lui, L. F. K.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Lutz, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Ma, C. G.

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

Ma, X. W.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

Marculescu, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

McGeehan, J. E.

J. E. McGeehan, S. Kumar, and A. E. Willner, “All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,” in Conference on Lasers and Electro–Optics (2005), paper CTuX6.

Meyer, J.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Minch, J.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

Mingshan, Z.

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

Moeller, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Monat, C.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Morel, P.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
[Crossref]

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

Moses, B.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Mulvad, H. C. H.

Nakarmi, B.

Narkiss, N.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Nebendahl, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Oehler, A.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Onoprishvili, T.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Oxenløwe, L. K.

Palushani, E.

Parameswaran, K. R.

Park, S. H.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

Parmigiani, F.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Petropoulos, P.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Piccirilli, A. B.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Piprek, J.

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2013).

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Qureshi, K. K.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Rakib-Uddin, M.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Rapp, S.

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

Rawal, S.

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Resan, B.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Rideout, W.

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Roeger, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Schellinger, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Schmogrow, R.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sharaiha, A.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
[Crossref]

Sharfin, W. F.

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Shu, X.

Singh, B. R.

Singh, S.

S. Singh and Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012).
[Crossref]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Streubel, K.

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sun, J.

Tam, H. Y.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Tang, M.

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

Tangdiongga, E.

Topomondzo, J.

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
[Crossref]

Vallaitis, T.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Vanderhaegen, B.

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

Vassell, M. O.

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wai, P. K. A.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

Wallin, J.

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

Wang, F. L.

J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

Wang, Q.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Wang, Y.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Weingarten, K.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Weng, H. Z.

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Werner, D. H.

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

Willner, A. E.

S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255–10260 (2006).
[Crossref]

J. E. McGeehan, S. Kumar, and A. E. Willner, “All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,” in Conference on Lasers and Electro–Optics (2005), paper CTuX6.

Winter, M.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

Won, Y. H.

Wu, J.

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Xiao, J. L.

J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

Xiao, Z. X.

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Xu, K.

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Xu, Q.

Yamauchi, M.

Yang, Y. D.

J. C. Liu, F. L. Wang, J. Y. Han, Y. Z. Hao, Y. D. Yang, J. L. Xiao, and Y. Z. Huang, “All-optical switching and multiple logic gates based on hybrid square–rectangular laser,” J. Lightwave Technol. 38, 1382–1390 (2020).
[Crossref]

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

Yoon, J. H.

Yu, L. J.

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

Yu, Y.

Zhang, J.

K. Chen, J. Hou, Z. Huang, T. Cao, J. Zhang, Y. Yu, and X. Zhang, “All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers,” Opt. Express 23, 3784–3794 (2015).
[Crossref]

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

Zhang, X.

Zhang, Y.

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

Zhao, Z.

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

Zhu, G.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Zhuang, L.

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

Zoiros, K. E.

A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
[Crossref]

A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
[Crossref]

AIP Adv. (1)

F. L. Wang, Y. Z. Huang, Y. D. Yang, C. G. Ma, Y. Z. Hao, M. Tang, and J. L. Xiao, “Study of optical bistability based on hybrid-cavity semiconductor lasers,” AIP Adv. 9, 045224 (2019).
[Crossref]

Appl. Phys. Lett. (1)

X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, and Z. X. Xiao, “Mode coupling in hybrid square-rectangular lasers for single mode operation,” Appl. Phys. Lett. 109, 071102 (2016).
[Crossref]

Electron. Lett. (1)

J. Zhang, J. Wu, C. Feng, K. Xu, and J. Lin, “40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering,” Electron. Lett. 42, 1243–1244 (2006).
[Crossref]

IEEE J. Quantum Electron. (4)

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40, 703–710 (2004).
[Crossref]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259–1264 (2001).
[Crossref]

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of InGaAsP and InGaAlAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[Crossref]

S. Rapp, J. Piprek, K. Streubel, J. Andre, and J. Wallin, “Temperature sensitivity of 1.54-m vertical-cavity lasers with an InP-based Bragg reflector,” IEEE J. Quantum Electron. 33, 1839–1845 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Singh and Lovkesh, “Ultrahigh speed optical signal processing logic based on an SOA-MZI,” IEEE J. Sel. Top. Quantum Electron. 18, 970–977 (2012).
[Crossref]

X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, and Y. Du, “Mode and lasing characteristics for hybrid square-rectangular lasers,” IEEE J. Sel. Top. Quantum Electron. 23, 1–9 (2017).
[Crossref]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O. Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (4)

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593–595 (2003).
[Crossref]

X. Chen, L. Huo, Z. Zhao, L. Zhuang, and C. Lou, “Reconfigurable all-optical logic gates using single semiconductor optical amplifier at 100-Gb/s,” IEEE Photon. Technol. Lett. 28, 2463–2466 (2016).
[Crossref]

G. Morthier, Z. Mingshan, B. Vanderhaegen, and R. Baets, “Experimental demonstration of an all-optical 2R regenerator with adjustable decision threshold and ‘true’ regeneration characteristics,” IEEE Photon. Technol. Lett. 12, 1516–1518 (2000).
[Crossref]

W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, “Well-barrier hole burning in quantum well lasers,” IEEE Photon. Technol. Lett. 3, 784–786 (1991).
[Crossref]

J. Comput. Electron. (1)

A. Kotb, K. E. Zoiros, and C. Guo, “Numerical investigation of an all-optical logic OR gate at 80 Gb/s with a dual pump–probe semiconductor optical amplifier (SOA)-assisted Mach–Zehnder interferometer (MZI),” J. Comput. Electron. 18, 271–278 (2019).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, and B. J. Eggleton, “Observation of soliton compression in silicon photonic crystals,” Nat. Commun. 5, 3160 (2014).
[Crossref]

Nat. Photonics (2)

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5, 364–371 (2011).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E.-J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4, 182–185 (2010).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. H. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Opt. Commun. (1)

A. Sharaiha, J. Topomondzo, and P. Morel, “All-optical logic AND–NOR gate with three inputs based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Commun. 265, 322–325 (2006).
[Crossref]

Opt. Express (9)

B. Nakarmi, M. Rakib-Uddin, and Y. H. Won, “Realization of all-optical multi-logic functions and a digital adder with input beam power management for multi-input injection locking in a single-mode Fabry-Pérot laser diode,” Opt. Express 19, 14121–14129 (2011).
[Crossref]

V. Jandieri, R. Khomeriki, and D. Erni, “Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides,” Opt. Express 26, 19845–19853 (2018).
[Crossref]

V. Jandieri, R. Khomeriki, T. Onoprishvili, D. H. Werner, J. Berakdar, and D. Erni, “Functional all-optical logic gates for true time-domain signal processing in nonlinear photonic crystal waveguides,” Opt. Express 28, 18317–18331 (2020).
[Crossref]

V. Jandieri, R. Khomeriki, J. Berakdar, and D. Erni, “Theory of soliton propagation in nonlinear photonic crystal waveguides,” Opt. Express 27, 29558–29566 (2019).
[Crossref]

H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express 18, 9961–9966 (2010).
[Crossref]

S. Kumar, A. E. Willner, D. Gurkan, K. R. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255–10260 (2006).
[Crossref]

K. Chen, J. Hou, Z. Huang, T. Cao, J. Zhang, Y. Yu, and X. Zhang, “All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers,” Opt. Express 23, 3784–3794 (2015).
[Crossref]

X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs,” Opt. Express 12, 361–366 (2004).
[Crossref]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref]

Opt. Laser Technol. (1)

A. Kotb, K. E. Zoiros, and C. Guo, “All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules,” Opt. Laser Technol. 108, 426–433 (2018).
[Crossref]

Opt. Lett. (1)

Optik (1)

A. Kotb, “Simulation of high quality factor all-optical logic gates based on quantum-dot semiconductor optical amplifier at 1 Tb/s,” Optik 127, 320–325 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

Y. Z. Huang, X. W. Ma, Y. D. Yang, and J. L. Xiao, “Review of the dynamic characteristics of AlGaInAs/InP microlasers subject to optical injection,” Semicond. Sci. Technol. 31, 113002 (2016).
[Crossref]

Other (3)

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).

J. E. McGeehan, S. Kumar, and A. E. Willner, “All-optical digital half-subtracter/adder using semiconductor optical amplifiers and a PPLN waveguide,” in Conference on Lasers and Electro–Optics (2005), paper CTuX6.

J. Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (Elsevier Science, 2013).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic diagram of the HSRL. (b) Simulated laser spectra at ${I_{{\rm SQ}}} = {{5}}\;{\rm{mA}}$ and ${I_{{\rm FP}}} = {{140}}\;{\rm{mA}}$ for a free-running HSRL.
Fig. 2.
Fig. 2. (a) Absorption spectra at $N = {0.6} \times {{1}}{{{0}}^{18}}\;{\rm{c}}{{\rm{m}}^{- 3}}$ and (b) gain spectra at $N = {1.8} \times {{1}}{{{0}}^{18}}\;{\rm{c}}{{\rm{m}}^{- 3}}$ with different temperature $T$ . (c) Absorption and (d) gain spectra with different carrier densities $N$ at $T = {{300}}\;{\rm{K}}$ .
Fig. 3.
Fig. 3. Output powers versus ${I_{{\rm FP}}}$ when ${I_{{\rm SQ}}} = {{0}}$ and 5 mA at 300 K.
Fig. 4.
Fig. 4. Minimum pulse energies ${W_{{\rm inj}}}$ required for the switching modes of (a) M2 and (b) M3 under different detuning frequencies $\Delta f$ when ${I_{{\rm SQ}}}$ is 5 mA and ${I_{{\rm FP}}}$ is 140 mA at 300 K.
Fig. 5.
Fig. 5. Power variations for (a) side mode M3 and (b) dominant mode M1 with different self-gain suppression coefficients at ${\varepsilon _{\textit{pq}}} = {2.8} \times {{1}}{{{0}}^{- 17}}\;{\rm{cm}}^3$ , and for (c) side mode M3 and (d) dominant mode M1 with different cross-gain suppression coefficients at ${\varepsilon _{\textit{pp}}} = {16.5} \times {{1}}{{{0}}^{- 17}}\;{\rm{cm}}^3$ , when $\Delta f = - {{110}}\;{\rm{GHz}}$ , ${W_{{\rm inj}}} = {0.65}\;{\rm{pJ}}$ , and the injected optical pulse width is 50 ps.
Fig. 6.
Fig. 6. Dynamic transition response of (a) input optical pulses of M3 and (b) output optical pulses of M1 with different ${Q_{M1}}$ when ${Q_{M3}} = {{2000}}$ , and the injected trigger width is 50 ps for the HSRL at 300 K.
Fig. 7.
Fig. 7. Dynamic transition response of M1 output optical signal pulses under different continuous-wave injection currents of (a) the square microcavity and (b) the FP cavity when the injected signal pulse width of M3 is 50 ps for the HSRL at 300 K.
Fig. 8.
Fig. 8. (a) Dynamic transition response and (b) eye pattern of all-optical logic NOT gate when ${W_{{\rm inj}}} = {0.65}\;{\rm{pJ}}$ and the injected optical pulse width is 50 ps at M3.
Fig. 9.
Fig. 9. Optical mode spectra of the all-optical logic NOR gate. (a) {Inject_M2: inject_M3: output_M1} = {0: 0: 1}; (b) {Inject_M2: inject_M3: output_M1} ={1: 0: 0}; (c) {Inject_M2: inject_M3: output_M1} = {0: 1: 0}; (d) {Inject_M2: inject_M3: output_M1} = {1: 1: 0}. (e) Dynamic transition response of the logic NOR function for HSRL triggered by optical signals with detuning frequency of ${-}{{120}}$ and ${-}{{110}}\;{\rm{GHz}}$ , injection pulse widths of 75 ps, and pulse energies of 0.9 pJ and 0.65 pJ at M2 and M3, respectively.
Fig. 10.
Fig. 10. Optical mode spectra of the all-optical logic NAND gate. (a) {Inject_M2: inject_M3: output_M1} = {0: 0: 1}; (b) {Inject_M2: inject_M3: output_M1} ={1: 0: 1}; (c) {Inject_M2: inject_M3: output_M1} = {0: 1: 1}; (d) {Inject_M2: inject_M3: output_M1} = {1: 1: 0}. (e) Dynamic transition response of the logic NAND function, and (f) the enlarged view of the output waveform for the device triggered by optical signals with detuning frequency of ${-}{{120}}$ and ${-}{{110}}\;{\rm{GHz}}$ , with injection pulse widths of 50 ps, and pulse energies of 0.35 pJ and 0.28 pJ at M2 and M3, respectively.

Tables (1)

Tables Icon

Table 1. Explanation and Meaning of the Various Symbols

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d N F P d t = η e I F P q e V F P , n A N F P B N F P 2 C N F P 3 γ R F P v g g F P , 1 S 1 γ R F P v g g F P , 2 S 2 γ R F P v g g F P , 3 S 3 ,
d N S Q d t = η e I S Q q e V S Q , n A N S Q - B N S Q 2 C N S Q 3 1 γ R S Q v g g S Q , 1 S 1 1 γ R S Q v g g S Q , 2 S 2 1 γ R S Q v g g S Q , 3 S 3 ,
d S 1 d t = v g [ Γ z γ g F P , 1 + Γ z ( 1 γ ) g S Q , 1 α int ] S 1 S 1 τ p c , 1 + Γ z β B [ γ N F P 2 + ( 1 γ ) B N S Q 2 ] ,
d ψ 1 d t = α 2 ( v g Γ z γ g F P , 1 + v g Γ z ( 1 γ ) g S Q , 1 α int v g 1 τ p c , 1 ) ,
d S 2 d t = v g [ Γ z γ g F P , 2 + Γ z ( 1 γ ) g S Q , 2 α int ] S 2 S 2 τ p c , 2 + Γ z β B [ γ N F P 2 + ( 1 γ ) B N S Q 2 ] + 2 κ c S 2 S i n j , 2 cos ψ 2 ,
d ψ 2 d t = α 2 ( v g Γ z γ g F P , 2 + v g Γ z ( 1 γ ) g S Q , 2 α int v g 1 τ p c , 2 ) κ c S i n j , 2 / S 2 sin ψ 2 Δ ω 2 ,
d S 3 d t = v g [ Γ z γ g F P , 3 + Γ z ( 1 γ ) g S Q , 3 α int ] S 3 S 3 τ p c , 3 + Γ z β B [ γ N F P 2 + ( 1 γ ) B N S Q 2 ] + 2 κ c S 3 S i n j , 3 cos ψ 3 ,
d ψ 3 d t = α 2 ( v g Γ z γ g F P , 3 + v g Γ z ( 1 γ ) g S Q , 3 α int v g 1 τ p c , 3 ) κ c S i n j , 3 / S 3 sin ψ 3 Δ ω 3 .
g ( N , λ , T ) = λ 4 8 π c n e f f 2 [ 1 exp ( h c / λ Δ F k T ) ] R sp ( λ , N ) ,
R sp ( λ , N ) = B N 2 π δ λ exp [ ( λ λ 0 ) 2 δ λ 2 ] .
δ λ = δ λ 0 ( 1 + b N ) ,
B = B 0 ( 1 + B 1 N ) × ( 1 + B 2 Δ T ) ,
g ( N , λ , T ) / λ = 0.
Δ F = k T ln ( N 2 / N i 2 ) ,
N i 2 = 4 × ( 2 π k 0 T ) 2 h 6 ( m n m p ) 3 / 2 m 0 3 exp ( E g 0 k T ) ,
g ( N , S ) = g 0 1 + ε pp S p + ε pq S q ln ( N + N s N tr + N s ) ,
P p = σ S p τ p c , p V e f f h c λ p ,
W i n j , p = κ c S i n j , p V a h c λ p Δ t .

Metrics