Abstract

The Fourier modal method (FMM) is certainly one of the most popular and general methods for the modeling of diffraction gratings. However, for non-lamellar gratings it is associated with a staircase approximation of the profile, leading to poor convergence rate for metallic gratings in TM polarization. One way to overcome this weakness of the FMM is the use of the fast Fourier factorization (FFF) first derived for the differential method. That approach relies on the definition of normal and tangential vectors to the profile. Instead, we introduce a coordinate system that matches laterally the profile and solve the covariant Maxwell’s equations in the new coordinate system, hence the name matched coordinate method (MCM). Comparison of efficiencies computed with MCM with other data from the literature validates the method.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Matched coordinates in the framework of polynomial modal methods for complex metasurface modeling

K. Edee, J.-P. Plumey, A. Moreau, and B. Guizal
J. Opt. Soc. Am. A 35(4) 608-615 (2018)

Modified rigorous coupled-wave analysis for grating-based plasmonic structures with a delta-thin conductive channel: far- and near-field study

Yurii M. Lyaschuk, Serhii M. Kukhtaruk, Vytautas Janonis, and Vadym V. Korotyeyev
J. Opt. Soc. Am. A 38(2) 157-167 (2021)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription