G. Granet, “Fourier-matching pseudospectral modal method for diffraction gratings: comment,” J. Opt. Soc. Am. A 29, 1843–1845 (2012).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
K. Edee, “Modal method based on sub-sectional Gegenbauer polynomial expansion for lamellar grating,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).
[Crossref]
D. Song, L. Yuan, and Y. Y. Lu, “Fourier-matching pseudospectral modal method for diffraction gratings,” J. Opt. Soc. Am. A 28, 613–620 (2011).
[Crossref]
L. Li and G. Granet, “Field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings,” J. Opt. Soc. Am. A 28, 738–746 (2011).
[Crossref]
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[Crossref]
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
J. L. Volakis, A. Chatterje, and L. C. Kempel, Finite Element Method for Electromagnetics, Antennas, Microwave Circuits, and Scattering Applications (IEEE, 1998).
M. H. Randriamihaja, G. Granet, K. Edee, and K. Raniriharinosy, “Polynomial modal analysis of lamellar diffraction gratings in conical mounting,” J. Opt. Soc. Am. A 33, 1679–1686 (2016).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
K. Edee, “Modal method based on sub-sectional Gegenbauer polynomial expansion for lamellar grating,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[Crossref]
M. H. Randriamihaja, G. Granet, K. Edee, and K. Raniriharinosy, “Polynomial modal analysis of lamellar diffraction gratings in conical mounting,” J. Opt. Soc. Am. A 33, 1679–1686 (2016).
[Crossref]
G. Granet, “Fourier-matching pseudospectral modal method for diffraction gratings: comment,” J. Opt. Soc. Am. A 29, 1843–1845 (2012).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
L. Li and G. Granet, “Field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings,” J. Opt. Soc. Am. A 28, 738–746 (2011).
[Crossref]
G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
J. L. Volakis, A. Chatterje, and L. C. Kempel, Finite Element Method for Electromagnetics, Antennas, Microwave Circuits, and Scattering Applications (IEEE, 1998).
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[Crossref]
A. C. Polycarpou, Introduction to the Finite Element Method in Electromagnetics, Synthesis Lectures on Computational Electromagnetics (Morgan and Claypool, 2006).
C. Pozirikidis, Introduction to Finite and Spectral Element Methods Using MATLAB (CRC Press, 2014).
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
J. L. Volakis, A. Chatterje, and L. C. Kempel, Finite Element Method for Electromagnetics, Antennas, Microwave Circuits, and Scattering Applications (IEEE, 1998).
E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg, “Higher order hierarchical Legendre basis functions for electromagnetic modeling,” IEEE Trans. Antennas Propag. 52, 2985–2994 (2004).
[Crossref]
D. Song, L. Yuan, and Y. Y. Lu, “Fourier-matching pseudospectral modal method for diffraction gratings,” J. Opt. Soc. Am. A 28, 613–620 (2011).
[Crossref]
M. Foresti, L. Menez, and A. V. Tishchenko, “Modal method in deep metal-dielectric gratings: the decisive role of hidden modes,” J. Opt. Soc. Am. A 23, 2501–2509 (2006).
[Crossref]
G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).
[Crossref]
L. Li and G. Granet, “Field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings,” J. Opt. Soc. Am. A 28, 738–746 (2011).
[Crossref]
G. Granet, “Fourier-matching pseudospectral modal method for diffraction gratings: comment,” J. Opt. Soc. Am. A 29, 1843–1845 (2012).
[Crossref]
S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995).
[Crossref]
P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
[Crossref]
M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. A 72, 1385–1392 (1982).
[Crossref]
R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995).
[Crossref]
K. Edee, “Modal method based on sub-sectional Gegenbauer polynomial expansion for lamellar grating,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).
[Crossref]
M. H. Randriamihaja, G. Granet, K. Edee, and K. Raniriharinosy, “Polynomial modal analysis of lamellar diffraction gratings in conical mounting,” J. Opt. Soc. Am. A 33, 1679–1686 (2016).
[Crossref]
K. Edee, I. Fenniche, G. Granet, and B. Guizal, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings: weighting function, convergence and stability,” Prog. Electromagn. Res. 133, 17–35 (2012).
[Crossref]
E. Popov, ed., Gratings: Theory and Numeric Applications (Institut Fresnel, CNRS, AMU, 2012).
A. C. Polycarpou, Introduction to the Finite Element Method in Electromagnetics, Synthesis Lectures on Computational Electromagnetics (Morgan and Claypool, 2006).
J. L. Volakis, A. Chatterje, and L. C. Kempel, Finite Element Method for Electromagnetics, Antennas, Microwave Circuits, and Scattering Applications (IEEE, 1998).
C. Pozirikidis, Introduction to Finite and Spectral Element Methods Using MATLAB (CRC Press, 2014).