Abstract

This paper reviews recent developments of non-contact three-dimensional (3D) surface metrology using an active structured optical probe. We focus primarily on those active non-contact 3D surface measurement techniques that could be applicable to the manufacturing industry. We discuss principles of each technology, and its advantageous characteristics as well as limitations. Towards the end, we discuss our perspectives on the current technological challenges in designing and implementing these methods in practical applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Won, “Structured light spiralling up,” Nat. Photonics 11, 619–622 (2017).
    [Crossref]
  2. J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
    [Crossref]
  3. K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
    [Crossref]
  4. D. Malacara, ed., Optical Shop Testing, 3rd ed. (Wiley, 2007).
  5. D. C. Ghiglia and M. D. Pritt, eds., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  6. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
    [Crossref]
  7. Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
    [Crossref]
  8. Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
    [Crossref]
  9. J. Schmit, K. Creath, and J. C. Wyant, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chap. Surface profilers, multiple wavelength, and white light interferometry, pp. 667–755.
  10. R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
    [Crossref]
  11. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [Crossref]
  12. L. Deck and P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [Crossref]
  13. A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
    [Crossref]
  14. F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
    [Crossref]
  15. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
    [Crossref]
  16. J. Wyant and V. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
    [Crossref]
  17. J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
    [Crossref]
  18. H. Shen, R. Zhu, Z. Gao, E. Pun, W. Wong, and X. Zhu, “Design and fabrication of computer-generated holograms for testing optical freeform surfaces,” Chin. Opt. Lett. 11, 032201 (2013).
    [Crossref]
  19. P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).
  20. T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
    [Crossref]
  21. M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).
  22. S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
    [Crossref]
  23. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
    [Crossref]
  24. S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
    [Crossref]
  25. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
    [Crossref]
  26. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).
  27. S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
    [Crossref]
  28. O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in 8th IEEE International Conference on Computer Vision (2001), pp. 359–366.
  29. J. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Opt. Laser Eng. (to be published).
    [Crossref]
  30. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [Crossref]
  31. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).
    [Crossref]
  32. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser. Eng. 45, 304–317 (2007).
    [Crossref]
  33. K. Qian, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010).
    [Crossref]
  34. K. Qian, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Laser Eng. 66, 67–73 (2015).
    [Crossref]
  35. L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
    [Crossref]
  36. H. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009).
    [Crossref]
  37. X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
    [Crossref]
  38. Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50, 1097–1106 (2012).
    [Crossref]
  39. M. Takeda, “Fourier fringe analysis and its applications to metrology of extreme physical phenomena: a review,” Appl. Opt. 52, 20–29 (2013).
    [Crossref]
  40. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999).
    [Crossref]
  41. Y. Wang and S. Zhang, “Novel phase coding method for absolute phase retrieval,” Opt. Lett. 37, 2067–2069 (2012).
    [Crossref]
  42. C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
    [Crossref]
  43. S. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: a review,” Opt. Laser Eng. 107, 28–37 (2018).
    [Crossref]
  44. K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
    [Crossref]
  45. Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
    [Crossref]
  46. Y. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. Moore, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013).
    [Crossref]
  47. Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24, 18445–18459 (2016).
    [Crossref]
  48. W. Cruz-Santos and L. Lopez-Garcia, “Implicit absolute phase retrieval in digital fringe projection without reference lines,” Appl. Opt. 54, 1688–1695 (2015).
    [Crossref]
  49. S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
    [Crossref]
  50. X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.
  51. D. Zheng, Q. Kemao, F. Da, and H. S. Seah, “Ternary gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
    [Crossref]
  52. C. Zhou, T. Liu, S. Si, J. Xu, Y. Liu, and Z. Lei, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20, 24139–24150 (2012).
    [Crossref]
  53. X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
    [Crossref]
  54. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [Crossref]
  55. S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
    [Crossref]
  56. S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010).
    [Crossref]
  57. B. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017).
    [Crossref]
  58. G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3-D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
    [Crossref]
  59. Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
    [Crossref]
  60. T. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40,1201–1206 (2001).
    [Crossref]
  61. W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38,540–542 (2013).
    [Crossref]
  62. J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
    [Crossref]
  63. J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).
    [Crossref]
  64. Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement,” Opt. Express 25, 30177–30188 (2017).
    [Crossref]
  65. Y. Wang and S. Zhang, “Comparison among square binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement,” Appl. Opt. 51, 861–872 (2012).
    [Crossref]
  66. M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
    [Crossref]
  67. “Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-1: 2000 (International Organization for Standardization, 2000).
  68. “Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-2:2012 (International Organization for Standardization, 2012).
  69. R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
    [Crossref]
  70. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
    [Crossref]
  71. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
    [Crossref]
  72. B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
    [Crossref]
  73. T. Bell and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55, 2346–2352 (2016).
    [Crossref]
  74. Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
    [Crossref]
  75. K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
    [Crossref]
  76. R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
    [Crossref]
  77. Y. Yin, X. Peng, A. Li, X. Liu, and B. Z. Gao, “Calibration of fringe projection profilometry with bundle adjustment strategy,” Opt. Lett. 37, 542–544 (2012).
    [Crossref]
  78. L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
    [Crossref]
  79. Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
    [Crossref]
  80. R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
    [Crossref]
  81. D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.
  82. S. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of ToF-cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–6.
  83. A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
    [Crossref]
  84. A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
    [Crossref]
  85. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
    [Crossref]
  86. B. Ngoi, K. Venkatakrishnan, and N. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001).
    [Crossref]
  87. J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
    [Crossref]
  88. H. Kihm and S.-W. Kim, “Fiber-diffraction interferometer for vibration desensitization,” Opt. Lett. 30, 2059–2061 (2005).
    [Crossref]
  89. J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
    [Crossref]
  90. M. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668–677 (2002).
    [Crossref]
  91. D.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991).
    [Crossref]
  92. G. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [Crossref]
  93. C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
    [Crossref]
  94. H. Altamar-Mercado, A. Patiño-Vanegas, and A. G. Marrugo, “Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy,” Appl. Opt. 58, A101–A111 (2019).
    [Crossref]
  95. M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
    [Crossref]
  96. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [Crossref]
  97. D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
    [Crossref]
  98. K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt. 43, 1241–1249 (2004).
    [Crossref]
  99. X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
    [Crossref]
  100. G. Bourdet and A. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18, 225–227 (1979).
    [Crossref]
  101. K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998).
    [Crossref]
  102. H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
    [Crossref]
  103. J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
    [Crossref]
  104. M. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994).
    [Crossref]
  105. M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
    [Crossref]
  106. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
    [Crossref]
  107. D. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
    [Crossref]
  108. H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
    [Crossref]
  109. R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
    [Crossref]
  110. C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
    [Crossref]
  111. K.-P. Proll, J.-M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42, 1773–1778 (2003).
    [Crossref]
  112. R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
    [Crossref]
  113. A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
    [Crossref]
  114. C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
    [Crossref]
  115. C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
    [Crossref]
  116. J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
    [Crossref]
  117. D. S. Mehta, M. Inam, J. Prakash, and A. Biradar, “Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry,” Appl. Opt. 52, 6119–6125 (2013).
    [Crossref]
  118. Y. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, “Fringe projection 3D microscopy with the general imaging model,” Opt. Express 23, 6846–6857 (2015).
    [Crossref]
  119. D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Laser Eng. 51, 538–541 (2013).
    [Crossref]
  120. D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22, 31826–31835 (2014).
    [Crossref]
  121. B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015).
    [Crossref]
  122. R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
    [Crossref]
  123. M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
    [Crossref]
  124. T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
    [Crossref]
  125. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
    [Crossref]
  126. S. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015).
    [Crossref]
  127. K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.
  128. M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
    [Crossref]
  129. G. Agresti and P. Zanuttigh, “Combination of spatially-modulated ToF and structured light for MPI-free depth estimation,” in Proceedings of the European Conference on Computer Vision (ECCV) (2018).
  130. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Adv. Opt. Photon. 10, 409–475 (2018).
    [Crossref]
  131. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
    [Crossref]
  132. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  133. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref]
  134. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [Crossref]
  135. T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011).
    [Crossref]
  136. Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24, 20324–20334 (2016).
    [Crossref]
  137. Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26, 7598–7613 (2018).
    [Crossref]
  138. Z. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019).
    [Crossref]
  139. C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
    [Crossref]
  140. A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
    [Crossref]
  141. S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.
  142. D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
    [Crossref]
  143. W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
    [Crossref]
  144. K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019).
    [Crossref]
  145. S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
    [Crossref]
  146. S. Lv, Q. Sun, Y. Zhang, Y. Jiang, J. Yang, J. Liu, and J. Wang, “Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks,” Opt. Lett. 45, 204–207 (2020).
    [Crossref]
  147. S. Van der Jeught and J. J. J. Dirckx, “Deep neural networks for single shot structured light profilometry,” Opt. Express 27, 17091–17101 (2019).
    [Crossref]
  148. J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
    [Crossref]
  149. J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
    [Crossref]
  150. S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
    [Crossref]
  151. Budianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016).
    [Crossref]
  152. H. Guo, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
    [Crossref]
  153. F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
    [Crossref]
  154. S. Jiao, Y. Gao, J. Feng, T. Lei, and X. Yuan, “Does deep learning always outperform simple linear regression in optical imaging?” Opt. Express 28, 3717–3731 (2020).
    [Crossref]
  155. F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
    [Crossref]
  156. L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
    [Crossref]
  157. B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016).
    [Crossref]
  158. S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
    [Crossref]
  159. C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
    [Crossref]
  160. C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24, 7337–7346 (2016).
    [Crossref]
  161. Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
    [Crossref]
  162. V. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018).
    [Crossref]
  163. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
    [Crossref]
  164. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
    [Crossref]
  165. D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
    [Crossref]
  166. H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
    [Crossref]
  167. H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
    [Crossref]
  168. C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
    [Crossref]
  169. S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
    [Crossref]
  170. S. Ri, M. Fujigaki, and Y. Morimoto, “Intensity range extension method for three-dimensional shape measurement in phase- measuring profilometry using a digital micromirror device camera,” Appl. Opt. 47, 5400–5407 (2008).
    [Crossref]
  171. S. Zhang, “Rapid and automatic optimal exposure control for digital fringe projection technique,” Opt. Laser Eng. 128, 106029 (2020).
    [Crossref]
  172. X. Hu, G. Wang, J.-S. Hyun, Y. Zhang, H. Yang, and S. Zhang, “Autofocusing method for high-resolution three-dimensional profilometry,” Opt. Lett. 45, 375–378 (2020).
    [Crossref]
  173. M. Zhong, X. Hu, F. Chen, C. Xiao, D. Peng, and S. Zhang, “Autofocusing method for digital fringe projection system with dual projectors,” Opt. Express 28, 12609–12620 (2020).
    [Crossref]
  174. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
    [Crossref]
  175. M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
    [Crossref]
  176. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13, 6738–6749 (2005).
    [Crossref]
  177. T. Kreis, “Application of digital holography for nondestructive testing and metrology: a review,” IEEE Trans. Ind. Inf. 12, 240–247 (2016).
    [Crossref]
  178. A. Mikš and J. Novák, “Analysis of the optical center position of an optical system of a camera lens,” Appl. Opt. 57, 4409–4414 (2018).
    [Crossref]
  179. Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
    [Crossref]
  180. L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).
    [Crossref]
  181. J.-S. Hyun, G. T. C. Chiu, and S. Zhang, “High-speed and high-accuracy 3D surface measurement using a mechanical projector,” Opt. Express 26, 1474–1487 (2018).
    [Crossref]
  182. S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
    [Crossref]
  183. X. Hu, G. Wang, Y. Zhang, H. Yang, and S. Zhang, “Large depth-of-field 3D shape measurement using an electrically tunable lens,” Opt. Express 27, 29697–29709 (2019).
    [Crossref]
  184. W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
    [Crossref]
  185. R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).
  186. T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
  187. R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
    [Crossref]
  188. H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
    [Crossref]
  189. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
    [Crossref]
  190. G.-H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50, 4557–4565 (2011).
    [Crossref]
  191. P. Lutzke, “Measuring error compensation on three-dimensional scans of translucent objects,” Opt. Eng. 50, 063601 (2011).
    [Crossref]
  192. R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.
  193. A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
    [Crossref]
  194. S. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.
  195. R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
    [Crossref]
  196. F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
    [Crossref]
  197. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
    [Crossref]
  198. W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000).
    [Crossref]
  199. J. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008).
    [Crossref]
  200. C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.
  201. H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.
  202. B. Zhang and Y. Li, “Dynamic calibration of the relative pose and error analysis in a structured light system,” J. Opt. Soc. Am. A 25, 612–622 (2008).
    [Crossref]
  203. D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
    [Crossref]
  204. N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012).
    [Crossref]
  205. Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
    [Crossref]
  206. S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
    [Crossref]
  207. T. Bell and S. Zhang, “Multi-wavelength depth encoding method for 3D range geometry compression,” Appl. Opt. 54, 10684–10961 (2015).
    [Crossref]
  208. A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
    [Crossref]
  209. T. Bell, B. Vlahov, J. P. Allebach, and S. Zhang, “Three-dimensional range geometry compression via phase encoding,” Appl. Opt. 56, 9285–9292 (2017).
    [Crossref]

2020 (14)

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
[Crossref]

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

S. Lv, Q. Sun, Y. Zhang, Y. Jiang, J. Yang, J. Liu, and J. Wang, “Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks,” Opt. Lett. 45, 204–207 (2020).
[Crossref]

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

S. Jiao, Y. Gao, J. Feng, T. Lei, and X. Yuan, “Does deep learning always outperform simple linear regression in optical imaging?” Opt. Express 28, 3717–3731 (2020).
[Crossref]

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

S. Zhang, “Rapid and automatic optimal exposure control for digital fringe projection technique,” Opt. Laser Eng. 128, 106029 (2020).
[Crossref]

X. Hu, G. Wang, J.-S. Hyun, Y. Zhang, H. Yang, and S. Zhang, “Autofocusing method for high-resolution three-dimensional profilometry,” Opt. Lett. 45, 375–378 (2020).
[Crossref]

M. Zhong, X. Hu, F. Chen, C. Xiao, D. Peng, and S. Zhang, “Autofocusing method for digital fringe projection system with dual projectors,” Opt. Express 28, 12609–12620 (2020).
[Crossref]

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

2019 (12)

X. Hu, G. Wang, Y. Zhang, H. Yang, and S. Zhang, “Large depth-of-field 3D shape measurement using an electrically tunable lens,” Opt. Express 27, 29697–29709 (2019).
[Crossref]

Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
[Crossref]

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

S. Van der Jeught and J. J. J. Dirckx, “Deep neural networks for single shot structured light profilometry,” Opt. Express 27, 17091–17101 (2019).
[Crossref]

Z. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019).
[Crossref]

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019).
[Crossref]

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
[Crossref]

H. Altamar-Mercado, A. Patiño-Vanegas, and A. G. Marrugo, “Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy,” Appl. Opt. 58, A101–A111 (2019).
[Crossref]

2018 (10)

H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
[Crossref]

J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,” Adv. Opt. Photon. 10, 409–475 (2018).
[Crossref]

Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26, 7598–7613 (2018).
[Crossref]

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

S. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: a review,” Opt. Laser Eng. 107, 28–37 (2018).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
[Crossref]

V. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018).
[Crossref]

J.-S. Hyun, G. T. C. Chiu, and S. Zhang, “High-speed and high-accuracy 3D surface measurement using a mechanical projector,” Opt. Express 26, 1474–1487 (2018).
[Crossref]

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

A. Mikš and J. Novák, “Analysis of the optical center position of an optical system of a camera lens,” Appl. Opt. 57, 4409–4414 (2018).
[Crossref]

2017 (11)

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

T. Bell, B. Vlahov, J. P. Allebach, and S. Zhang, “Three-dimensional range geometry compression via phase encoding,” Appl. Opt. 56, 9285–9292 (2017).
[Crossref]

R. Won, “Structured light spiralling up,” Nat. Photonics 11, 619–622 (2017).
[Crossref]

D. Zheng, Q. Kemao, F. Da, and H. S. Seah, “Ternary gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
[Crossref]

B. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement,” Opt. Express 25, 30177–30188 (2017).
[Crossref]

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

2016 (18)

Budianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24, 20324–20334 (2016).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).
[Crossref]

T. Bell and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55, 2346–2352 (2016).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
[Crossref]

Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24, 18445–18459 (2016).
[Crossref]

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24, 7337–7346 (2016).
[Crossref]

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

T. Kreis, “Application of digital holography for nondestructive testing and metrology: a review,” IEEE Trans. Ind. Inf. 12, 240–247 (2016).
[Crossref]

2015 (11)

F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
[Crossref]

T. Bell and S. Zhang, “Multi-wavelength depth encoding method for 3D range geometry compression,” Appl. Opt. 54, 10684–10961 (2015).
[Crossref]

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

K. Qian, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Laser Eng. 66, 67–73 (2015).
[Crossref]

W. Cruz-Santos and L. Lopez-Garcia, “Implicit absolute phase retrieval in digital fringe projection without reference lines,” Appl. Opt. 54, 1688–1695 (2015).
[Crossref]

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

S. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015).
[Crossref]

Y. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, “Fringe projection 3D microscopy with the general imaging model,” Opt. Express 23, 6846–6857 (2015).
[Crossref]

B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015).
[Crossref]

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

2014 (10)

D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22, 31826–31835 (2014).
[Crossref]

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
[Crossref]

J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
[Crossref]

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
[Crossref]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
[Crossref]

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
[Crossref]

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

2013 (11)

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref]

Y. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. Moore, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38,540–542 (2013).
[Crossref]

M. Takeda, “Fourier fringe analysis and its applications to metrology of extreme physical phenomena: a review,” Appl. Opt. 52, 20–29 (2013).
[Crossref]

H. Shen, R. Zhu, Z. Gao, E. Pun, W. Wong, and X. Zhu, “Design and fabrication of computer-generated holograms for testing optical freeform surfaces,” Chin. Opt. Lett. 11, 032201 (2013).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Laser Eng. 51, 538–541 (2013).
[Crossref]

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
[Crossref]

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

D. S. Mehta, M. Inam, J. Prakash, and A. Biradar, “Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry,” Appl. Opt. 52, 6119–6125 (2013).
[Crossref]

2012 (9)

Y. Wang and S. Zhang, “Novel phase coding method for absolute phase retrieval,” Opt. Lett. 37, 2067–2069 (2012).
[Crossref]

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50, 1097–1106 (2012).
[Crossref]

C. Zhou, T. Liu, S. Si, J. Xu, Y. Liu, and Z. Lei, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20, 24139–24150 (2012).
[Crossref]

Y. Yin, X. Peng, A. Li, X. Liu, and B. Z. Gao, “Calibration of fringe projection profilometry with bundle adjustment strategy,” Opt. Lett. 37, 542–544 (2012).
[Crossref]

Y. Wang and S. Zhang, “Comparison among square binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement,” Appl. Opt. 51, 861–872 (2012).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012).
[Crossref]

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
[Crossref]

S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
[Crossref]

2011 (6)

G.-H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50, 4557–4565 (2011).
[Crossref]

P. Lutzke, “Measuring error compensation on three-dimensional scans of translucent objects,” Opt. Eng. 50, 063601 (2011).
[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).
[Crossref]

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011).
[Crossref]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

2010 (13)

H. Guo, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

K. Qian, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010).
[Crossref]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[Crossref]

S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010).
[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3-D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
[Crossref]

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
[Crossref]

2009 (5)

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[Crossref]

H. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009).
[Crossref]

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
[Crossref]

2008 (4)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Intensity range extension method for three-dimensional shape measurement in phase- measuring profilometry using a digital micromirror device camera,” Appl. Opt. 47, 5400–5407 (2008).
[Crossref]

J. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008).
[Crossref]

B. Zhang and Y. Li, “Dynamic calibration of the relative pose and error analysis in a structured light system,” J. Opt. Soc. Am. A 25, 612–622 (2008).
[Crossref]

2007 (2)

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser. Eng. 45, 304–317 (2007).
[Crossref]

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

2006 (2)

2005 (2)

2004 (4)

K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt. 43, 1241–1249 (2004).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
[Crossref]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).
[Crossref]

2003 (2)

2002 (5)

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

M. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668–677 (2002).
[Crossref]

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[Crossref]

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

2001 (3)

2000 (4)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
[Crossref]

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000).
[Crossref]

1999 (1)

1998 (3)

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
[Crossref]

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998).
[Crossref]

C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
[Crossref]

1997 (2)

S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[Crossref]

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[Crossref]

1995 (2)

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[Crossref]

R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
[Crossref]

1994 (3)

L. Deck and P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[Crossref]

M. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994).
[Crossref]

M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
[Crossref]

1992 (4)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[Crossref]

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

1991 (1)

D.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991).
[Crossref]

1990 (2)

G. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[Crossref]

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
[Crossref]

1989 (1)

J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
[Crossref]

1988 (3)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

1985 (1)

1984 (1)

1983 (1)

1982 (1)

D. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[Crossref]

1979 (1)

1972 (1)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

Agresti, G.

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

G. Agresti and P. Zanuttigh, “Combination of spatially-modulated ToF and structured light for MPI-free depth estimation,” in Proceedings of the European Conference on Computer Vision (ECCV) (2018).

Al-Bashir, S.

H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
[Crossref]

Alenya, G.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Alfieri, D.

Alippi, C.

C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
[Crossref]

Allebach, J. P.

Altamar-Mercado, H.

An, Y.

Aoto, T.

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

Asada, N.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Asundi, A.

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[Crossref]

Athale, R. A.

Ayubi, G. A.

Ayubi, J. A.

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Barbastathis, G.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

Barsi, C.

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Batlle, J.

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

Bechstein, K.-H.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998).
[Crossref]

Bell, T.

Bennett, V.

Beraldin, J.-A.

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

Bhandari, A.

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Bian, Y.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Bianco, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Biradar, A.

Bishop, T. E.

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011).
[Crossref]

Blunt, R.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Boisvert, J.

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

Bourdet, G.

Brahm, A.

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Brock, N. J.

J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
[Crossref]

Brown, L.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Bu, J.

K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
[Crossref]

Budianto,

Budianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016).
[Crossref]

Burge, J. H.

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[Crossref]

Burke, J.

Cai, Z.

Carocci, M.

Carrier, B.

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

Chen, B.

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016).
[Crossref]

Chen, C.

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

Chen, F.

Chen, J.

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

Chen, Q.

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

Chen, T.

T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.

Chen, W.

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

Chen, X.

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

Chen, Z.

Cheng, Y.-Y.

Chiang, F.-P.

Chim, S. S.

Chiu, G. T. C.

Choi, O.

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).

Chu, S.

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

Chua, P. S.

Clausi, D.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Cong, P.

Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
[Crossref]

Conroy, M.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Coppola, G.

Cortelazzo, G. M.

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

Coupland, J.

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

Coupland, J. M.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

Cournoyer, L.

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

Creath, K.

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

J. Schmit, K. Creath, and J. C. Wyant, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chap. Surface profilers, multiple wavelength, and white light interferometry, pp. 667–755.

Cree, M. J.

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Cruz-Santos, W.

Da, F.

Dai, J.

J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

De Groot, P.

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

L. Deck and P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[Crossref]

De Nicola, S.

Deck, L.

Deglint, J.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Di, J.

Diao, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

Dicaire, L.-G.

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

Dietrich, P.

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Ding, Y.

J. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008).
[Crossref]

Dirckx, J. J. J.

Dong, Y.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Dorrington, A.

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Dorrington, A. A.

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

Dresel, T.

Drouin, M.-A.

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dupont, F.

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

Edgar, M. P.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Ekstrand, L.

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).
[Crossref]

Euliss, G. W.

Evans, C.

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

Fairman, P. S.

Favaro, P.

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011).
[Crossref]

Feifei, G.

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

Feigin, M.

Feng, J.

Feng, Q.-Y.

Feng, S.

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Ferrari, J. A.

Ferraro, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13, 6738–6749 (2005).
[Crossref]

Ferrero, A.

C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
[Crossref]

Finizio, A.

Fleischer, M.

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[Crossref]

Florea, C.

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

Fofi, D.

R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.

Foix, S.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Fu, X.

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

Fuchs, C.

T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.

Fuchs, S.

S. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of ToF-cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–6.

Fuchs, W.

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998).
[Crossref]

Fujigaki, M.

Funatomi, T.

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
[Crossref]

Furukawa, R.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Gao, B. Z.

Gao, F.

H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
[Crossref]

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

Gao, J.

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

Gao, N.

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

Gao, Y.

Gao, Z.

Garrido-Jurado, S.

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

Genovese, K.

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

Gerber, J.

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

Gibson, G. M.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Giusca, C.

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

Godin, G.

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

Gomez, C.

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

Gordan, M.

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

Grilli, S.

Gu, G.

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

Guo, H.

H. Guo, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[Crossref]

H. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009).
[Crossref]

Guo, L.

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
[Crossref]

Guo, T.

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

Gupta, M.

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

Gutierrez, D.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Haible, P.

R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
[Crossref]

Haitjema, H.

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

Halevy, A.

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
[Crossref]

Hall-Holt, O.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in 8th IEEE International Conference on Computer Vision (2001), pp. 359–366.

Hamilton, D.

D. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[Crossref]

Han, J.

Hansard, M.

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).

Harasaki, A.

Hartley, R.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).

Hatazawa, T.

J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
[Crossref]

Häusler, G.

Hayes, J. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
[Crossref]

He, X. Y.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

He, Y.

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

Heide, F.

S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.

Heidrich, W.

S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.

Heist, S.

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Henao, J.

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

Hendriks, C.

M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
[Crossref]

Hernandez, Q.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Hibino, K.

Hinosugi, H.

Hirzinger, G.

S. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of ToF-cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–6.

Honda, T.

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

Horaud, R.

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).

Hou, Z.

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
[Crossref]

Hu, X.

Huan, L.

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Huang, J.

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

Huang, L.

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[Crossref]

Huang, P. S.

H. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref]

Huddart, Y. R.

Hudelot, C.

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

Hullin, M. B.

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

Hyun, J.-S.

Ihlenfeldt, S.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Inam, M.

Jamtsho, S.

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
[Crossref]

Jarabo, A.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Javidi, B.

Jiang, C.

Jiang, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

Jiang, J.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Jiang, X.

H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
[Crossref]

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
[Crossref]

Jiang, Y.

Jianyang, F.

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

Jiao, S.

Jordan, H.-J.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
[Crossref]

Kadambi, A.

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Kagami, J.

J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
[Crossref]

Kanade, T.

S. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.

Kang, X.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

Karpinsky, N.

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
[Crossref]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012).
[Crossref]

Kawasaki, H.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Keitler, P.

C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kemao, Q.

Kihm, H.

Kim, C.

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
[Crossref]

Kim, M. H.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

Kim, S.-W.

Kino, G. S.

Klinker, G.

C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.

Koch, R.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Kofman, J.

D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
[Crossref]

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

Koike, K.

J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
[Crossref]

Kolb, A.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Koliopoulos, C. L.

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

Körner, K.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
[Crossref]

K.-P. Proll, J.-M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42, 1773–1778 (2003).
[Crossref]

Kowarschik, R. M.

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

Kreis, T.

T. Kreis, “Application of digital holography for nondestructive testing and metrology: a review,” IEEE Trans. Ind. Inf. 12, 240–247 (2016).
[Crossref]

Kubo, H.

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

Kuehmstedt, P.

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

Kühmstedt, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Kurokawa, T.

Kushida, T.

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

Kuwamura, S.

Lamb, R.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Lamm, M.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lavoué, G.

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

Leach, R.

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Leach, R. K.

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

Lee, S.

S. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015).
[Crossref]

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).

Lefloch, D.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Lei, S.

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010).
[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[Crossref]

Lei, T.

Lei, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Lei, Z.

Lensch, H. P.

T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.

Lenzen, F.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Levoy, M.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

Li, A.

Li, B.

Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
[Crossref]

V. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018).
[Crossref]

B. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015).
[Crossref]

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
[Crossref]

J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
[Crossref]

Li, D.

Li, F.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Li, J.

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
[Crossref]

Li, K.

K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
[Crossref]

Li, R.

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

Li, X.

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

Li, Y.

Li, Z.

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Liang, R.

Liang, X.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

Lichti, D. D.

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
[Crossref]

Lin, H.

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

Link, P.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Liu, C.

Liu, F.

F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
[Crossref]

Liu, G.-H.

Liu, J.

Liu, T.

Liu, X.

Liu, X.-Y.

Liu, Y.

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

C. Zhou, T. Liu, S. Si, J. Xu, Y. Liu, and Z. Lei, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20, 24139–24150 (2012).
[Crossref]

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Lohry, W.

Lopez-Garcia, L.

Lun, D. P. K.

Budianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016).
[Crossref]

Lutzke, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

P. Lutzke, “Measuring error compensation on three-dimensional scans of translucent objects,” Opt. Eng. 50, 063601 (2011).
[Crossref]

Lv, S.

Lyu, M.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

MacKinnon, D.

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

Madrid-Cuevas, F. J.

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

Maglo, A.

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

Mait, J. N.

Marco, J.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Marin, G.

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

Marn-Jiménez, M. J.

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

Marrugo, A. G.

Martin, J.

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

Martino, J. M. D.

Masia, B.

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Matsushita, Y.

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

Mattoccia, S.

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

Mauger, D.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

Mehta, D. S.

Mei, Q.

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

Memmolo, P.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Mendoza-Santoyo, F.

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

Meneses, J.

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

Menk, C.

C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.

Meriaudeau, F.

R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.

Merola, F.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Miccio, L.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Mikš, A.

Millerd, J. E.

J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
[Crossref]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

Minto, F.

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

Mira-Agudelo, A.

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

Mochimaru, M.

S. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.

Moore, A. J.

Morales-Marn, J.

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

Morimoto, Y.

Muhamedsalih, H.

Mukaigawa, Y.

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
[Crossref]

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

Muñoz, A.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Muñoz-Salinas, R.

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

Muraji, T.

Mutoh, K.

Mutto, C. D.

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

Nair, R.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Nayar, S. K.

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

Ngoi, B.

Nikolaev, N.

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

Nivet, J.-M.

North-Morris, M. B.

Norvig, P.

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
[Crossref]

Notni, G.

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000).
[Crossref]

Novák, J.

Ohyama, N.

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

Oliver, J.

Oreb, B. F.

Orghidan, R.

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

Orszag, A.

Osten, W.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Z. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019).
[Crossref]

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
[Crossref]

Ozcan, A.

Padgett, M. J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Pagliarulo, V.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Patiño-Vanegas, A.

Paturzo, M.

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

Pedrini, G.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Z. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019).
[Crossref]

Peng, D.

Peng, X.

Pereira, F.

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
[Crossref]

Petzing, J.

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

Picard, M.

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

Pierattini, G.

Pineda, J.

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

Piuri, V.

C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
[Crossref]

Poggi, M.

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

Prakash, J.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Proll, K.-P.

Pun, E.

Qian, J.

Qian, K.

K. Qian, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Laser Eng. 66, 67–73 (2015).
[Crossref]

K. Qian, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010).
[Crossref]

Quan, C.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

Radwell, N.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Ran, R.

R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.

Raskar, R.

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Rayas, J.

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

Resch, C.

C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.

Ri, S.

Rodella, R.

Rodriguez, J. J.

Rodriguez-Vera, R.

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

Romero, L. A.

R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
[Crossref]

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

Rößler, C.

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Rueda, E.

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

Rüping, S.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Rusinkiewicz, S.

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in 8th IEEE International Conference on Computer Vision (2001), pp. 359–366.

Sagawa, R.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Saito, S.

Salahieh, B.

Salvi, J.

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Sansoni, G.

Schäfer, H.

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Scharfenberger, C.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Scharstein, D.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[Crossref]

Schmidt, I.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Schmit, J.

A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
[Crossref]

J. Schmit, K. Creath, and J. C. Wyant, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chap. Surface profilers, multiple wavelength, and white light interferometry, pp. 667–755.

Schreiber, W.

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000).
[Crossref]

Seah, H. S.

Seidel, H.-P.

T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.

Sekkati, H.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Shang, H. M.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

Shen, G.

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

Shen, H.

Shen, L.

F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
[Crossref]

Shi, Y.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref]

Shim, H.

S. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015).
[Crossref]

Shyu, L.-H.

D.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991).
[Crossref]

Si, S.

Situ, G.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6, 921–943 (2019).
[Crossref]

Sivakumar, N.

Stoll, A.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Stolz, C.

R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.

Streeter, L.

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

Striano, V.

Struik, K.

M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
[Crossref]

M. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994).
[Crossref]

Sturm, P.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Su, D.-C.

D.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991).
[Crossref]

Su, R.

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

Su, S.

S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.

Su, X.

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).
[Crossref]

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

T. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40,1201–1206 (2001).
[Crossref]

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
[Crossref]

X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.

Su, X. Y.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Suming, T.

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

Sun, B.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, M.-J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Sun, Q.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Suresh, V.

Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
[Crossref]

V. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018).
[Crossref]

Szeliski, R.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[Crossref]

Takeda, M.

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tanaka, K.

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
[Crossref]

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

Tao, T.

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

Tay, C. J.

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

Thomas, M.

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

Tian, J.

D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22, 31826–31835 (2014).
[Crossref]

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Laser Eng. 51, 538–541 (2013).
[Crossref]

J. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008).
[Crossref]

Tiziani, H.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
[Crossref]

R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
[Crossref]

Tiziani, H. J.

Tong, X.

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

Torras, C.

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

Torres-Sepúlveda, W.

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

Tosi, F.

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

Trusiak, M.

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

Tsujiuchi, J.

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

Tünnermann, A.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

Valera, J. D. R.

Van der Jeught, S.

van der Weide, D.

VanDelden, J.

Vargas, R.

R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
[Crossref]

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

Venkatakrishnan, K.

Venzke, H.

Visscher, M.

M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
[Crossref]

M. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994).
[Crossref]

Vlahov, B.

Von Bally, G.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Vukicevic, D.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Waddington, C.

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

Wang, C.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Wang, C. F.

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

Wang, F.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Wang, G.

Wang, H.

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Wang, J.

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

Wang, K.

Wang, L.

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

Wang, M.

Wang, X.

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

Wang, Y.

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

Wegner, M.

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
[Crossref]

Weichert, D.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Weston, N. J.

Wetzstein, G.

S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.

Whyte, R.

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Wilson, T.

D. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[Crossref]

Windecker, R.

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[Crossref]

R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
[Crossref]

Won, R.

R. Won, “Structured light spiralling up,” Nat. Photonics 11, 619–622 (2017).
[Crossref]

Wong, A.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Wong, W.

Wrobel, S.

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Wu, F.

Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
[Crossref]

Wu, J.

Wu, Z.

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

Wyant, J.

Wyant, J. C.

Xian, T.

Xiang, L.

X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.

Xiao, C.

Xiao, Y.

X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.

Xiong, Z.

Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
[Crossref]

Xu, J.

Yagi, Y.

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Yamaguchi, I.

Yamazaki, S.

S. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.

Yang, H.

Yang, J.

Yau, S.-T.

Yin, W.

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

Yin, Y.

You, Z.

Yuan, X.

Zanuttigh, P.

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

G. Agresti and P. Zanuttigh, “Combination of spatially-modulated ToF and structured light for MPI-free depth estimation,” in Proceedings of the European Conference on Computer Vision (ECCV) (2018).

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

Zelek, J.

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

Zhan, S.

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

Zhang, B.

Zhang, C.

Zhang, D.

K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
[Crossref]

F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
[Crossref]

Zhang, G.

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

Zhang, M.

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

Zhang, Q.

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.

Zhang, S.

R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
[Crossref]

X. Hu, G. Wang, J.-S. Hyun, Y. Zhang, H. Yang, and S. Zhang, “Autofocusing method for high-resolution three-dimensional profilometry,” Opt. Lett. 45, 375–378 (2020).
[Crossref]

S. Zhang, “Rapid and automatic optimal exposure control for digital fringe projection technique,” Opt. Laser Eng. 128, 106029 (2020).
[Crossref]

M. Zhong, X. Hu, F. Chen, C. Xiao, D. Peng, and S. Zhang, “Autofocusing method for digital fringe projection system with dual projectors,” Opt. Express 28, 12609–12620 (2020).
[Crossref]

X. Hu, G. Wang, Y. Zhang, H. Yang, and S. Zhang, “Large depth-of-field 3D shape measurement using an electrically tunable lens,” Opt. Express 27, 29697–29709 (2019).
[Crossref]

J.-S. Hyun, G. T. C. Chiu, and S. Zhang, “High-speed and high-accuracy 3D surface measurement using a mechanical projector,” Opt. Express 26, 1474–1487 (2018).
[Crossref]

S. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: a review,” Opt. Laser Eng. 107, 28–37 (2018).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
[Crossref]

B. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017).
[Crossref]

Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement,” Opt. Express 25, 30177–30188 (2017).
[Crossref]

T. Bell, B. Vlahov, J. P. Allebach, and S. Zhang, “Three-dimensional range geometry compression via phase encoding,” Appl. Opt. 56, 9285–9292 (2017).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

T. Bell and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55, 2346–2352 (2016).
[Crossref]

Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24, 18445–18459 (2016).
[Crossref]

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016).
[Crossref]

C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24, 7337–7346 (2016).
[Crossref]

B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015).
[Crossref]

T. Bell and S. Zhang, “Multi-wavelength depth encoding method for 3D range geometry compression,” Appl. Opt. 54, 10684–10961 (2015).
[Crossref]

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
[Crossref]

J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38,540–542 (2013).
[Crossref]

Y. Wang and S. Zhang, “Comparison among square binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement,” Appl. Opt. 51, 861–872 (2012).
[Crossref]

Y. Wang and S. Zhang, “Novel phase coding method for absolute phase retrieval,” Opt. Lett. 37, 2067–2069 (2012).
[Crossref]

S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
[Crossref]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012).
[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).
[Crossref]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010).
[Crossref]

S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[Crossref]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

J. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Opt. Laser Eng. (to be published).
[Crossref]

Zhang, Y.

Zhang, Z.

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50, 1097–1106 (2012).
[Crossref]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

Zhao, H.

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

Zhao, J.

Zhao, Q.

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
[Crossref]

Zheng, D.

Zheng, Y.

Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
[Crossref]

Zhong, K.

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref]

Zhong, M.

Zhou, C.

Zhou, P.

Zhou, W. S.

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

Zhou, X.

Zhu, J.

Zhu, R.

Zhu, X.

Zisserman, A.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).

Zuo, C.

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

ACM Comput. Surv. (1)

A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot, “3D mesh compression: survey, comparisons, and emerging trends,” ACM Comput. Surv. 47, 1–41 (2015).
[Crossref]

ACM Trans. Graph. (4)

J. Marco, Q. Hernandez, A. Muñoz, Y. Dong, A. Jarabo, M. H. Kim, X. Tong, and D. Gutierrez, “Deep ToF: off-the-shelf real-time correction of multipath interference in time-of-flight imaging,” ACM Trans. Graph. 36, 1–12 (2017).
[Crossref]

S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acquisition,” ACM Trans. Graph. 21, 438–446 (2002).
[Crossref]

M. Gupta, S. K. Nayar, M. B. Hullin, and J. Martin, “Phasor imaging: a generalization of correlation-based time-of-flight imaging,” ACM Trans. Graph. 34, 1–18 (2015).
[Crossref]

A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph. 32, 1–10 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (38)

C. Zhang, P. S. Huang, and F.-P. Chiang, “Microscopic phase-shifting profilometry based on digital micromirror device technology,” Appl. Opt. 41, 5896–5904 (2002).
[Crossref]

K.-P. Proll, J.-M. Nivet, K. Körner, and H. J. Tiziani, “Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays,” Appl. Opt. 42, 1773–1778 (2003).
[Crossref]

D. S. Mehta, M. Inam, J. Prakash, and A. Biradar, “Liquid-crystal phase-shifting lateral shearing interferometer with improved fringe contrast for 3D surface profilometry,” Appl. Opt. 52, 6119–6125 (2013).
[Crossref]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D167 (2020).
[Crossref]

B. Ngoi, K. Venkatakrishnan, and N. Sivakumar, “Phase-shifting interferometry immune to vibration,” Appl. Opt. 40, 3211–3214 (2001).
[Crossref]

M. B. North-Morris, J. VanDelden, and J. C. Wyant, “Phase-shifting birefringent scatterplate interferometer,” Appl. Opt. 41, 668–677 (2002).
[Crossref]

S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[Crossref]

D. S. Mehta, S. Saito, H. Hinosugi, M. Takeda, and T. Kurokawa, “Spectral interference Mirau microscope with an acousto-optic tunable filter for three-dimensional surface profilometry,” Appl. Opt. 42, 1296–1305 (2003).
[Crossref]

K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, “Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer,” Appl. Opt. 43, 1241–1249 (2004).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49, 2903–2909 (2010).
[Crossref]

G. Bourdet and A. Orszag, “Absolute distance measurements by CO2 laser multiwavelength interferometry,” Appl. Opt. 18, 225–227 (1979).
[Crossref]

G. S. Kino and S. S. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[Crossref]

H. Altamar-Mercado, A. Patiño-Vanegas, and A. G. Marrugo, “Robust 3D surface recovery by applying a focus criterion in white light scanning interference microscopy,” Appl. Opt. 58, A101–A111 (2019).
[Crossref]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
[Crossref]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).
[Crossref]

Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23, 4539–4543 (1984).
[Crossref]

Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
[Crossref]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
[Crossref]

L. Deck and P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[Crossref]

A. Harasaki, J. Schmit, and J. C. Wyant, “Improved vertical-scanning interferometry,” Appl. Opt. 39, 2107–2115 (2000).
[Crossref]

J. Wyant and V. Bennett, “Using computer generated holograms to test aspheric wavefronts,” Appl. Opt. 11, 2833–2839 (1972).
[Crossref]

M. Takeda, “Fourier fringe analysis and its applications to metrology of extreme physical phenomena: a review,” Appl. Opt. 52, 20–29 (2013).
[Crossref]

G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38, 6565–6573 (1999).
[Crossref]

W. Cruz-Santos and L. Lopez-Garcia, “Implicit absolute phase retrieval in digital fringe projection without reference lines,” Appl. Opt. 54, 1688–1695 (2015).
[Crossref]

D. Zheng, Q. Kemao, F. Da, and H. S. Seah, “Ternary gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing,” Appl. Opt. 56, 3660–3665 (2017).
[Crossref]

T. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40,1201–1206 (2001).
[Crossref]

Y. Wang and S. Zhang, “Comparison among square binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement,” Appl. Opt. 51, 861–872 (2012).
[Crossref]

B. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured light system with an out-of-focus projector,” Appl. Opt. 53, 3415–3426 (2014).
[Crossref]

T. Bell and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55, 2346–2352 (2016).
[Crossref]

Y. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Novel method for large range structured light system calibration,” Appl. Opt. 55, 9563–9572 (2016).
[Crossref]

S. Ri, M. Fujigaki, and Y. Morimoto, “Intensity range extension method for three-dimensional shape measurement in phase- measuring profilometry using a digital micromirror device camera,” Appl. Opt. 47, 5400–5407 (2008).
[Crossref]

A. Mikš and J. Novák, “Analysis of the optical center position of an optical system of a camera lens,” Appl. Opt. 57, 4409–4414 (2018).
[Crossref]

T. Bell, B. Vlahov, J. P. Allebach, and S. Zhang, “Three-dimensional range geometry compression via phase encoding,” Appl. Opt. 56, 9285–9292 (2017).
[Crossref]

S. Zhang, “Three-dimensional range data compression using computer graphics rendering pipeline,” Appl. Opt. 51, 4058–4064 (2012).
[Crossref]

T. Bell and S. Zhang, “Multi-wavelength depth encoding method for 3D range geometry compression,” Appl. Opt. 54, 10684–10961 (2015).
[Crossref]

G.-H. Liu, X.-Y. Liu, and Q.-Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50, 4557–4565 (2011).
[Crossref]

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 9, 405–407 (1966).
[Crossref]

Chin. Opt. Lett. (1)

CIRP Ann. (1)

R. K. Leach, C. Giusca, H. Haitjema, C. Evans, and X. Jiang, “Calibration and verification of areal surface texture measuring instruments,” CIRP Ann. 64, 797–813 (2015).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

C. Alippi, A. Ferrero, and V. Piuri, “Artificial intelligence for instruments and measurement applications,” IEEE Instrum. Meas. Mag. 1(2), 9–17 (1998).
[Crossref]

IEEE Intell. Syst. (1)

A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE Intell. Syst. 24, 8–12 (2009).
[Crossref]

IEEE Sens. J. (2)

M. Poggi, G. Agresti, F. Tosi, P. Zanuttigh, and S. Mattoccia, “Confidence estimation for ToF and stereo sensors and its application to depth data fusion,” IEEE Sens. J. 20, 1411–1421 (2020).
[Crossref]

S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cameras: a survey,” IEEE Sens. J. 11, 1917–1926 (2011).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Tran. Image Process. (1)

Budianto and D. P. K. Lun, “Robust fringe projection profilometry via sparse representation,” IEEE Tran. Image Process. 25, 1726–1739 (2016).
[Crossref]

IEEE Trans. Comput. Imaging (1)

F. Li, H. Sekkati, J. Deglint, C. Scharfenberger, M. Lamm, D. Clausi, J. Zelek, and A. Wong, “Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping,” IEEE Trans. Comput. Imaging 3, 74–83 (2017).
[Crossref]

IEEE Trans. Ind. Inf. (1)

T. Kreis, “Application of digital holography for nondestructive testing and metrology: a review,” IEEE Trans. Ind. Inf. 12, 240–247 (2016).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 972–986 (2011).
[Crossref]

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000).
[Crossref]

Image Vis. Comput. (1)

S. Lee and H. Shim, “Skewed stereo time-of-flight camera for translucent object imaging,” Image Vis. Comput. 43, 27–38 (2015).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. Weichert, P. Link, A. Stoll, S. Rüping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Manuf. Technol. 104, 1889–1902 (2019).
[Crossref]

Int. J. Comput. Vis. (1)

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[Crossref]

IPSJ Trans. Comput. Vis. Appl. (1)

T. Kushida, K. Tanaka, T. Aoto, T. Funatomi, and Y. Mukaigawa, “Phase disambiguation using spatio-temporally modulated illumination in depth sensing,” IPSJ Trans. Comput. Vis. Appl. 12, 1 (2020).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

D. D. Lichti, C. Kim, and S. Jamtsho, “An integrated bundle adjustment approach to range camera geometric self-calibration,” ISPRS J. Photogramm. Remote Sens. 65, 360–368 (2010).
[Crossref]

J. Appl. Phys. (1)

D. Hamilton and T. Wilson, “Surface profile measurement using the confocal microscope,” J. Appl. Phys. 53, 5320–5322 (1982).
[Crossref]

J. Mod. Opt. (2)

D.-C. Su and L.-H. Shyu, “Phase shifting scatter plate interferometer using a polarization technique,” J. Mod. Opt. 38, 951–959 (1991).
[Crossref]

R. Windecker, P. Haible, and H. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt. 42, 2059–2069 (1995).
[Crossref]

J. Opt. (1)

K.-H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength (mesures de distances absolues par interférométrie utilisant une longueur d’onde variable synthétique),” J. Opt. 29, 179 (1998).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Sens. (1)

H. Lin, J. Gao, G. Zhang, X. Chen, Y. He, and Y. Liu, “Review and comparison of high-dynamic range three-dimensional shape measurement techniques,” J. Sens. 2017, 9576850 (2017).
[Crossref]

J. Visual Commun. Image Represent. (2)

S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marn-Jiménez, “Simultaneous reconstruction and calibration for multi-view structured light scanning,” J. Visual Commun. Image Represent. 39, 120–131 (2016).
[Crossref]

Y. Zhang, Z. Xiong, P. Cong, and F. Wu, “Robust depth sensing with adaptive structured light illumination,” J. Visual Commun. Image Represent. 25, 649–658 (2014).
[Crossref]

Light Sci. Appl. (1)

F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, and G. Situ, “Phase imaging with an untrained neural network,” Light Sci. Appl. 9, 77 (2020).
[Crossref]

Mach. Vis. Appl. (1)

R. Orghidan, J. Salvi, M. Gordan, C. Florea, and J. Batlle, “Structured light self-calibration with vanishing points,” Mach. Vis. Appl. 25, 489–500 (2014).
[Crossref]

Meas. Sci. Technol. (3)

Y. Zheng, Y. Wang, V. Suresh, and B. Li, “Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera,” Meas. Sci. Technol. 30, 075202 (2019).
[Crossref]

H.-J. Jordan, M. Wegner, and H. Tiziani, “Highly accurate non-contact characterization of engineering surfaces using confocal microscopy,” Meas. Sci. Technol. 9, 1142 (1998).
[Crossref]

F. Gao, R. K. Leach, J. Petzing, and J. M. Coupland, “Surface measurement errors using commercial scanning white light interferometers,” Meas. Sci. Technol. 19, 015303 (2007).
[Crossref]

Nanomanuf. Metrol. (1)

C. Gomez, R. Su, P. De Groot, and R. Leach, “Noise reduction in coherence scanning interferometry for surface topography measurement,” Nanomanuf. Metrol. 3, 68–76 (2020).
[Crossref]

Nat. Commun. (1)

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref]

Nat. Photonics (1)

R. Won, “Structured light spiralling up,” Nat. Photonics 11, 619–622 (2017).
[Crossref]

NCSLI Meas. (1)

J.-A. Beraldin, B. Carrier, D. MacKinnon, and L. Cournoyer, “Characterization of triangulation-based 3D imaging systems using certified artifacts,” NCSLI Meas. 7, 50–60 (2016).
[Crossref]

Neurocomputing (1)

F. Liu, D. Zhang, and L. Shen, “Study on novel curvature features for 3D fingerprint recognition,” Neurocomputing 168, 599–608 (2015).
[Crossref]

Opt. Commun. (4)

C. Chen, N. Gao, X. Wang, and Z. Zhang, “Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement,” Opt. Commun. 410, 694–702 (2017).
[Crossref]

X. Y. Su, W. S. Zhou, G. Von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94, 561–573 (1992).
[Crossref]

C. Quan, X. Y. He, C. F. Wang, C. J. Tay, and H. M. Shang, “Shape measurement of small objects using LCD fringe projection with phase shifting,” Opt. Commun. 189, 21–29 (2001).
[Crossref]

J. Huang, T. Honda, N. Ohyama, and J. Tsujiuchi, “Fringe scanning scatter plate interferometer using a polarized light,” Opt. Commun. 68, 235–238 (1988).
[Crossref]

Opt. Eng. (13)

M. Thomas, R. Su, N. Nikolaev, J. Coupland, and R. K. Leach, “Modeling of interference microscopy beyond the linear regime,” Opt. Eng. 59, 034110 (2020).
[Crossref]

R. Windecker, M. Fleischer, and H. J. Tiziani, “Three-dimensional topometry with stereo microscopes,” Opt. Eng. 36, 3372–3377 (1997).
[Crossref]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601 (2006).
[Crossref]

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng. 29, 1439–1444 (1990).
[Crossref]

H. Guo and P. S. Huang, “Absolute phase technique for the Fourier transform method,” Opt. Eng. 48, 043609 (2009).
[Crossref]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

H. Guo, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[Crossref]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[Crossref]

R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington, “Resolving multiple propagation paths in time of flight range cameras using direct and global separation methods,” Opt. Eng. 54, 113109 (2015).
[Crossref]

R. M. Kowarschik, J. Gerber, G. Notni, W. Schreiber, and P. Kuehmstedt, “Adaptive optical 3D measurement with structured light,” Opt. Eng. 39, 150–158 (2000).
[Crossref]

W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000).
[Crossref]

W. Torres-Sepúlveda, J. Henao, J. Morales-Marn, A. Mira-Agudelo, and E. Rueda, “Hysteresis characterization of an electrically focus-tunable lens,” Opt. Eng. 59, 044103 (2020).
[Crossref]

P. Lutzke, “Measuring error compensation on three-dimensional scans of translucent objects,” Opt. Eng. 50, 063601 (2011).
[Crossref]

Opt. Express (25)

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref]

C. Jiang, T. Bell, and S. Zhang, “High dynamic range real-time 3D shape measurement,” Opt. Express 24, 7337–7346 (2016).
[Crossref]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
[Crossref]

S. Jiao, Y. Gao, J. Feng, T. Lei, and X. Yuan, “Does deep learning always outperform simple linear regression in optical imaging?” Opt. Express 28, 3717–3731 (2020).
[Crossref]

D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
[Crossref]

M. Zhong, X. Hu, F. Chen, C. Xiao, D. Peng, and S. Zhang, “Autofocusing method for digital fringe projection system with dual projectors,” Opt. Express 28, 12609–12620 (2020).
[Crossref]

P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express 13, 6738–6749 (2005).
[Crossref]

X. Hu, G. Wang, Y. Zhang, H. Yang, and S. Zhang, “Large depth-of-field 3D shape measurement using an electrically tunable lens,” Opt. Express 27, 29697–29709 (2019).
[Crossref]

J.-S. Hyun, G. T. C. Chiu, and S. Zhang, “High-speed and high-accuracy 3D surface measurement using a mechanical projector,” Opt. Express 26, 1474–1487 (2018).
[Crossref]

C. Zhou, T. Liu, S. Si, J. Xu, Y. Liu, and Z. Lei, “Phase coding method for absolute phase retrieval with a large number of codewords,” Opt. Express 20, 24139–24150 (2012).
[Crossref]

S. Zhang and S.-T. Yau, “High-resolution, real-time 3-D absolute coordinate measurement based on a phase-shifting method,” Opt. Express 14, 2644–2649 (2006).
[Crossref]

Y. R. Huddart, J. D. R. Valera, N. J. Weston, and A. J. Moore, “Absolute phase measurement in fringe projection using multiple perspectives,” Opt. Express 21, 21119–21130 (2013).
[Crossref]

Y. An, J.-S. Hyun, and S. Zhang, “Pixel-wise absolute phase unwrapping using geometric constraints of structured light system,” Opt. Express 24, 18445–18459 (2016).
[Crossref]

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).
[Crossref]

Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3D shape measurement,” Opt. Express 25, 30177–30188 (2017).
[Crossref]

S. Zhang, D. van der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express 18, 9684–9689 (2010).
[Crossref]

Y. Yin, M. Wang, B. Z. Gao, X. Liu, and X. Peng, “Fringe projection 3D microscopy with the general imaging model,” Opt. Express 23, 6846–6857 (2015).
[Crossref]

T. Muraji, K. Tanaka, T. Funatomi, and Y. Mukaigawa, “Depth from phasor distortions in fog,” Opt. Express 27, 18858–18868 (2019).
[Crossref]

D. Li, C. Liu, and J. Tian, “Telecentric 3D profilometry based on phase-shifting fringe projection,” Opt. Express 22, 31826–31835 (2014).
[Crossref]

B. Li and S. Zhang, “Flexible calibration method for microscopic structured light system using telecentric lens,” Opt. Express 23, 25795–25803 (2015).
[Crossref]

Z. Cai, X. Liu, X. Peng, Y. Yin, A. Li, J. Wu, and B. Z. Gao, “Structured light field 3D imaging,” Opt. Express 24, 20324–20334 (2016).
[Crossref]

Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26, 7598–7613 (2018).
[Crossref]

Z. Cai, X. Liu, G. Pedrini, W. Osten, and X. Peng, “Accurate depth estimation in structured light fields,” Opt. Express 27, 13532–13546 (2019).
[Crossref]

K. Wang, Y. Li, Q. Kemao, J. Di, and J. Zhao, “One-step robust deep learning phase unwrapping,” Opt. Express 27, 15100–15115 (2019).
[Crossref]

S. Van der Jeught and J. J. J. Dirckx, “Deep neural networks for single shot structured light profilometry,” Opt. Express 27, 17091–17101 (2019).
[Crossref]

Opt. Laser Eng. (28)

S. Feng, C. Zuo, W. Yin, G. Gu, and Q. Chen, “Micro deep learning profilometry for high-speed 3D surface imaging,” Opt. Laser Eng. 121, 416–427 (2019).
[Crossref]

D. Li and J. Tian, “An accurate calibration method for a camera with telecentric lenses,” Opt. Laser Eng. 51, 538–541 (2013).
[Crossref]

J. Dai, B. Li, and S. Zhang, “High-quality fringe patterns generation using binary pattern optimization through symmetry and periodicity,” Opt. Laser Eng. 52, 195–200 (2014).
[Crossref]

S. Lei and S. Zhang, “Digital sinusoidal fringe generation: defocusing binary patterns vs focusing sinusoidal patterns,” Opt. Laser Eng. 48, 561–569 (2010).
[Crossref]

B. Li and S. Zhang, “Microscopic structured light 3D profilometry: binary defocusing technique vs sinusoidal fringe projection,” Opt. Laser Eng. 96, 117–123 (2017).
[Crossref]

K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Laser Eng. 85, 53–64 (2016).
[Crossref]

K. Qian, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Laser Eng. 48, 141–148 (2010).
[Crossref]

K. Qian, “Applications of windowed Fourier fringe analysis in optical measurement: a review,” Opt. Laser Eng. 66, 67–73 (2015).
[Crossref]

C. Zuo, L. Huan, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review,” Opt. Laser Eng. 85, 84–103 (2016).
[Crossref]

S. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: a review,” Opt. Laser Eng. 107, 28–37 (2018).
[Crossref]

K. Zhong, Z. Li, Y. Shi, C. Wang, and Y. Lei, “Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping,” Opt. Laser Eng. 51, 1213–1222 (2013).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-D shape measurement method: a review,” Opt. Laser Eng. 48, 191–204 (2010).
[Crossref]

Z. Zhang, “Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques,” Opt. Laser Eng. 50, 1097–1106 (2012).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Laser Eng. 106, 119–131 (2018).
[Crossref]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Laser Eng. 42, 245–261 (2004).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Laser Eng. 87, 90–96 (2016).
[Crossref]

M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Laser Eng. 104, 32–47 (2018).
[Crossref]

S. Zhang, “Rapid and automatic optimal exposure control for digital fringe projection technique,” Opt. Laser Eng. 128, 106029 (2020).
[Crossref]

H. Jiang, H. Zhao, and X. Li, “High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces,” Opt. Laser Eng. 50, 1484–1493 (2012).
[Crossref]

H. Zhao, X. Liang, X. Diao, and H. Jiang, “Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector,” Opt. Laser Eng. 54, 170–174 (2014).
[Crossref]

S. Feng, Y. Zhang, Q. Chen, C. Zuo, R. Li, and G. Shen, “General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique,” Opt. Laser Eng. 59, 56–71 (2014).
[Crossref]

B. Chen and S. Zhang, “High-quality 3D shape measurement using saturated fringe patterns,” Opt. Laser Eng. 87, 83–89 (2016).
[Crossref]

S. Zhan, T. Suming, G. Feifei, S. Chu, and F. Jianyang, “DOE-based structured-light method for accurate 3D sensing,” Opt. Laser Eng. 120, 21–30 (2019).
[Crossref]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Three-dimensional shape measurement technique for shiny surfaces by adaptive pixel-wise projection intensity adjustment,” Opt. Laser Eng. 91, 206–215 (2017).
[Crossref]

V. Suresh, Y. Wang, and B. Li, “High-dynamic-range 3D shape measurement utilizing the transitioning state of digital micromirror device,” Opt. Laser Eng. 107, 176–181 (2018).
[Crossref]

C. Waddington and J. Kofman, “Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting,” Opt. Laser Eng. 48, 251–256 (2010).
[Crossref]

N. Karpinsky and S. Zhang, “Holovideo: real-time 3D video encoding and decoding on gpu,” Opt. Laser Eng. 50, 280–286 (2012).
[Crossref]

Z. Hou, X. Su, and Q. Zhang, “Virtual structured-light coding for three-dimensional shape data compression,” Opt. Laser Eng. 50, 844–849 (2012).
[Crossref]

Opt. Laser Technol. (2)

J. Tian, Y. Ding, and X. Peng, “Self-calibration of a fringe projection system using epipolar constraint,” Opt. Laser Technol. 40, 538–544 (2008).
[Crossref]

C. Quan, C. J. Tay, X. Y. He, X. Kang, and H. M. Shang, “Microscopic surface contouring by fringe projection method,” Opt. Laser Technol. 34, 547–552 (2002).
[Crossref]

Opt. Laser. Eng. (1)

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Laser. Eng. 45, 304–317 (2007).
[Crossref]

Opt. Lett. (13)

Z. Li, K. Zhong, Y. Li, X. Zhou, and Y. Shi, “Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects,” Opt. Lett. 38, 1389–1391 (2013).
[Crossref]

Y. Wang and S. Zhang, “Novel phase coding method for absolute phase retrieval,” Opt. Lett. 37, 2067–2069 (2012).
[Crossref]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3-D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38,540–542 (2013).
[Crossref]

S. Lv, Q. Sun, Y. Zhang, Y. Jiang, J. Yang, J. Liu, and J. Wang, “Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks,” Opt. Lett. 45, 204–207 (2020).
[Crossref]

J. Qian, S. Feng, Y. Li, T. Tao, J. Han, Q. Chen, and C. Zuo, “Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry,” Opt. Lett. 45, 1842–1844 (2020).
[Crossref]

Y. Yin, X. Peng, A. Li, X. Liu, and B. Z. Gao, “Calibration of fringe projection profilometry with bundle adjustment strategy,” Opt. Lett. 37, 542–544 (2012).
[Crossref]

H. Kihm and S.-W. Kim, “Fiber-diffraction interferometer for vibration desensitization,” Opt. Lett. 30, 2059–2061 (2005).
[Crossref]

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett. 39, 1705–1708 (2014).
[Crossref]

X. Hu, G. Wang, J.-S. Hyun, Y. Zhang, H. Yang, and S. Zhang, “Autofocusing method for high-resolution three-dimensional profilometry,” Opt. Lett. 45, 375–378 (2020).
[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).
[Crossref]

Opt. Pura Appl. (1)

R. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: a comparative study,” Opt. Pura Appl. 51, 50305 (2018).
[Crossref]

Optica (1)

Optik (1)

A. Li, X. Peng, Y. Yin, X. Liu, Q. Zhao, K. Körner, and W. Osten, “Fringe projection based quantitative 3D microscopy,” Optik 124, 5052–5056 (2013).
[Crossref]

Pattern Recogn. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recogn. 43, 2666–2680 (2010).
[Crossref]

Precis. Eng. (2)

M. Visscher and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part I: principles of focus error detection,” Precis. Eng. 16, 192–198 (1994).
[Crossref]

M. Visscher, C. Hendriks, and K. Struik, “Optical profilometry and its application to mechanically inaccessible surfaces part ii: application to elastometer/glass contacts,” Precis. Eng. 16, 199–204 (1994).
[Crossref]

Proc. SPIE (7)

H. Muhamedsalih, S. Al-Bashir, F. Gao, and X. Jiang, “Single-shot RGB polarising interferometer,” Proc. SPIE 10749, 1074909 (2018).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, and J. C. Wyant, “Instantaneous phase-shift point-diffraction interferometer,” Proc. SPIE 5531, 264–272 (2004).
[Crossref]

C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992).
[Crossref]

J. Chen, T. Guo, L. Wang, Z. Wu, X. Fu, and X. Hu, “Microscopic fringe projection system and measuring method,” Proc. SPIE 8759, 87594U (2013).
[Crossref]

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[Crossref]

M.-A. Drouin, G. Godin, M. Picard, J. Boisvert, and L.-G. Dicaire, “Structured-light systems using a programmable quasi-analogue projection subsystem,” Proc. SPIE 11294, 112940O (2020).
[Crossref]

A. Brahm, C. Rößler, P. Dietrich, S. Heist, P. Kühmstedt, and G. Notni, “Non-destructive 3D shape measurement of transparent and black objects with thermal fringes,” Proc. SPIE 9868, 98680C (2016).
[Crossref]

Prog. Opt. (1)

K. Creath, “Phase-measurement interferometry techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

Sci. Rep. (1)

W. Yin, Q. Chen, S. Feng, T. Tao, L. Huang, M. Trusiak, A. Asundi, and C. Zuo, “Temporal phase unwrapping using deep learning,” Sci. Rep. 9, 1–12 (2019).
[Crossref]

SPIE Rev. (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).
[Crossref]

Strain (1)

R. Rodriguez-Vera, K. Genovese, J. Rayas, and F. Mendoza-Santoyo, “Vibration analysis at microscale by Talbot fringe projection method,” Strain 45, 249–258 (2009).
[Crossref]

Vis. Inf. (1)

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: a computer graphics and vision perspective,” Vis. Inf. 1, 65–79 (2017).
[Crossref]

Wear (1)

J. Kagami, T. Hatazawa, and K. Koike, “Measurement of surface profiles by the focusing method,” Wear 134, 221–229 (1989).
[Crossref]

Other (22)

D. Lefloch, R. Nair, F. Lenzen, H. Schäfer, L. Streeter, M. J. Cree, R. Koch, and A. Kolb, “Technical foundation and calibration methods for time-of-flight cameras,” in Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications (Springer, 2013), pp. 3–24.

S. Fuchs and G. Hirzinger, “Extrinsic and depth calibration of ToF-cameras,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008), pp. 1–6.

K. Tanaka, Y. Mukaigawa, H. Kubo, Y. Matsushita, and Y. Yagi, “Recovering transparent shape from time-of-flight distortion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4387–4395.

G. Agresti and P. Zanuttigh, “Combination of spatially-modulated ToF and structured light for MPI-free depth estimation,” in Proceedings of the European Conference on Computer Vision (ECCV) (2018).

S. Su, F. Heide, G. Wetzstein, and W. Heidrich, “Deep end-to-end time-of-flight imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 6383–6392.

D. Malacara, ed., Optical Shop Testing, 3rd ed. (Wiley, 2007).

D. C. Ghiglia and M. D. Pritt, eds., Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

J. Schmit, K. Creath, and J. C. Wyant, Optical Shop Testing, 3rd ed. (Wiley, 2007), Chap. Surface profilers, multiple wavelength, and white light interferometry, pp. 667–755.

P. Zanuttigh, G. Marin, C. D. Mutto, F. Minto, and G. M. Cortelazzo, Time-of-Flight and Structured Light Depth Cameras (Springer, 2016).

M. Hansard, S. Lee, O. Choi, and R. Horaud, Time-of-Flight Cameras, Principles, Methods and Applications (Springer, 2013).

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003).

O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scanning of moving objects,” in 8th IEEE International Conference on Computer Vision (2001), pp. 359–366.

J. Xu and S. Zhang, “Status, challenges, and future perspectives of fringe projection profilometry,” Opt. Laser Eng. (to be published).
[Crossref]

“Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-1: 2000 (International Organization for Standardization, 2000).

“Geometrical product specifications (GPS)—surface texture: profile method; measurement standards—part 1: material measures,” Standard ISO 5436-2:2012 (International Organization for Standardization, 2012).

X. Su, Q. Zhang, Y. Xiao, and L. Xiang, “Dynamic 3-D shape measurement techniques with marked fringes tracking,” in Fringe (2009), pp. 493–496.

S. Yamazaki, M. Mochimaru, and T. Kanade, “Simultaneous self-calibration of a projector and a camera using structured light,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) (IEEE, 2011), pp. 60–67.

R. Ran, C. Stolz, D. Fofi, and F. Meriaudeau, “Non contact 3D measurement scheme for transparent objects using UV structured light,” in 20th International Conference on Pattern Recognition (ICPR) (IEEE, 2010), pp. 1646–1649.

R. Leach, L. Brown, J. Jiang, R. Blunt, M. Conroy, and D. Mauger, Guide to the Measurement of Smooth Surface Topography using Coherence Scanning Interferometry (2008).

T. Chen, H. P. Lensch, C. Fuchs, and H.-P. Seidel, “Polarization and phase-shifting for 3D scanning of translucent objects,” in IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.

C. Resch, P. Keitler, C. Menk, and G. Klinker, “Semi-automatic calibration of a projector-camera system using arbitrary objects with known geometry,” in IEEE Virtual Reality (VR) (2015), pp. 271–272.

H. Kawasaki, R. Sagawa, Y. Yagi, R. Furukawa, N. Asada, and P. Sturm, “One-shot scanning method using an uncalibrated projector and camera system,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops (2010), pp. 104–111.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Performance of various optical surface measurement techniques. Image was recreated based on the image in Ref. [2].
Fig. 2.
Fig. 2. Basic principle of CSI.
Fig. 3.
Fig. 3. Basic principle of ToF.
Fig. 4.
Fig. 4. ToF depth measurement using phase offset. Copyright [2011] IEEE. Reprinted, with permission, from Ref. [22].
Fig. 5.
Fig. 5. Basic principle of triangulation-based SL.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( x , y ) = tan 1 [ k = 1 N I k ( x , y ) sin ( 2 π k / N ) k = 1 N I k ( x , y ) cos ( 2 π k / N ) ] ,
I k ( x , y ) = I ( x , y ) + I ( x , y ) cos [ ϕ ( x , y ) + 2 π k / N ] .
d = c τ 2 ,
Δ φ = tan 1 ( m 3 m 1 m 0 m 2 ) .
d = c Δ φ 4 π f m ,
[ u c , v c , 1 ] T = A [ R , t ] [ x w , y w , z w , 1 ] T ,

Metrics