Abstract

Confocal chromatic displacement sensors are versatile and precise sensors for measuring the distance to a single point. In order to obtain a 3D measurement device, this paper presents an integrated scanning sensor design that employs a tilting lens mechanism for manipulating the light path of the sensor. The optical implications of the design are analytically modeled and simulated. An experimental setup is constructed to evaluate the system design and to test its performance on a variety of samples. Results show good agreement with the simulations and modeling; with maximal tip/tilt angles of ${\pm}{2.5^ \circ}$, the setup is capable of measuring a volume of $1.7 \times 1.7 \times 1\;{\rm{mm}}^3$ with a lateral resolution of 24.8 µm and an axial resolution of 3 µm.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bullet signature measurement with chromatic confocal sensor

Hengzheng Wei, Weinong Wang, Xiaolin Wang, and Yiyi Li
Appl. Opt. 59(22) 6594-6599 (2020)

DMD-based three-dimensional chromatic confocal microscopy

Shaobai Li and Rongguang Liang
Appl. Opt. 59(14) 4349-4356 (2020)

References

  • View by:
  • |
  • |
  • |

  1. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
    [Crossref]
  2. R. Schmitt and F. Moenning, “Ensure success with inline-metrology,” in XVIII IMEKO World Congress Metrology for a Sustainable Development (2006).
  3. G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
    [Crossref]
  4. K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).
  5. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4, 441–471 (2012).
    [Crossref]
  6. X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
    [Crossref]
  7. Micro-Epsilon Messtechnik GmbH & Co. KG, “OptoNCDT // Laser displacement sensors (triangulation), 2020, https://www.micro-epsilon.com/download/products/cat--optoNCDT--en-us.pdf .
  8. C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.
  9. A. Miks, J. Novak, and P. Novak, “Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor,” Appl. Opt. 49, 3259–3264 (2010).
    [Crossref]
  10. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.
  11. F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
    [Crossref]
  12. H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
    [Crossref]
  13. R. M. Schmidt, G. Schitter, and A. Rankers, The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration (IOS Press, 2014).
  14. C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
    [Crossref]
  15. J. Schlarp, E. Csencsics, and G. Schitter, “Optical scanning of laser line sensors for 3D imaging,” Appl. Opt. 57, 5242–5248 (2018).
    [Crossref]
  16. S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).
  17. B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
    [Crossref]
  18. E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
    [Crossref]
  19. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
    [Crossref]
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).
  21. G. Schröder and H. Treiber, Technische Optik (Vogel Buchverlag Munchen, 2007), vol. 8.
  22. Micro-Epsilon Messtechnik GmbH & Co. KG, “ConfocalDT // Confocal chromatic sensor system,” 2020, https://www.micro-epsilon.com/download/products/cat--confocaldt--en.pdf .
  23. Y. Petrov, “Github Optometrika,” 2020, https://www.github.com/caiuspetronius/optometrika .
  24. D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
    [Crossref]
  25. C.-P.-B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15, 11154–11166 (2007).
    [Crossref]

2019 (1)

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

2018 (1)

2017 (2)

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
[Crossref]

2012 (1)

2011 (1)

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

2010 (1)

2009 (2)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
[Crossref]

2007 (2)

D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
[Crossref]

C.-P.-B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15, 11154–11166 (2007).
[Crossref]

2005 (1)

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

2004 (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[Crossref]

1984 (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Aguilar, J. J.

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

Anderson, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Berkovic, G.

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Brosed, F. J.

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

Chen, C.-Y.

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

Chen, X.

C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
[Crossref]

Cheng, P.-Y.

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

Chiao, M.

Chou, C.-C.

D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
[Crossref]

Chun, B. S.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
[Crossref]

Csencsics, E.

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

J. Schlarp, E. Csencsics, and G. Schitter, “Optical scanning of laser line sensors for 3D imaging,” Appl. Opt. 57, 5242–5248 (2018).
[Crossref]

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

Curless, B.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Davis, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Docchio, F.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Fulk, D.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Ginsberg, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Ginzton, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Guillomía, D.

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

Gweon, D.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
[Crossref]

Harding, K.

K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).

Hwang, C.-H.

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

Ito, S.

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

Kim, K.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
[Crossref]

Koller, D.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Kunzmann, H.

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

Lee, S.-M.

D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
[Crossref]

Levoy, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Li, G.

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

Li, Z.

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

Lu, B.-R.

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

Miks, A.

Moenning, F.

R. Schmitt and F. Moenning, “Ensure success with inline-metrology,” in XVIII IMEKO World Congress Metrology for a Sustainable Development (2006).

Molesini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Novak, J.

Novak, P.

Pedrini, G.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Pereira, L.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Perng, D.-B.

D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
[Crossref]

Pfeifer, T.

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

Poggi, P.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Poik, M.

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

Pulli, K.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Quercioli, F.

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Rankers, A.

R. M. Schmidt, G. Schitter, and A. Rankers, The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration (IOS Press, 2014).

Rusinkiewicz, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Sansoni, G.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Santolaria, J.

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

Schitter, G.

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

J. Schlarp, E. Csencsics, and G. Schitter, “Optical scanning of laser line sensors for 3D imaging,” Appl. Opt. 57, 5242–5248 (2018).
[Crossref]

R. M. Schmidt, G. Schitter, and A. Rankers, The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration (IOS Press, 2014).

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

Schlarp, J.

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

J. Schlarp, E. Csencsics, and G. Schitter, “Optical scanning of laser line sensors for 3D imaging,” Appl. Opt. 57, 5242–5248 (2018).
[Crossref]

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

Schmidt, R. M.

R. M. Schmidt, G. Schitter, and A. Rankers, The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration (IOS Press, 2014).

Schmitt, R.

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

R. Schmitt and F. Moenning, “Ensure success with inline-metrology,” in XVIII IMEKO World Congress Metrology for a Sustainable Development (2006).

Schröder, G.

G. Schröder and H. Treiber, Technische Optik (Vogel Buchverlag Munchen, 2007), vol. 8.

Schwenke, H.

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

Shade, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

Shafir, E.

Siu, C.-P.-B.

Sun, T.

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

Trebeschi, M.

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

Treiber, H.

G. Schröder and H. Treiber, Technische Optik (Vogel Buchverlag Munchen, 2007), vol. 8.

Weckenmann, A.

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

Weng, C.-J.

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

Xi, J.

C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
[Crossref]

Yu, C.

C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
[Crossref]

Zeng, H.

Zhao, X.

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

Zou, X.

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

CIRP Ann. (1)

H. Kunzmann, T. Pfeifer, R. Schmitt, H. Schwenke, and A. Weckenmann, “Productive metrology-adding value to manufacture,” CIRP Ann. 54, 155–168 (2005).
[Crossref]

IEEE J. Ind. Appl. (1)

E. Csencsics, S. Ito, J. Schlarp, and G. Schitter, “System integration and control for 3D scanning laser metrology,” IEEE J. Ind. Appl. 8, 207–217 (2019).
[Crossref]

Int. J. Adv. Manuf. Technol. (2)

D.-B. Perng, C.-C. Chou, and S.-M. Lee, “Design and development of a new machine vision wire bonding inspection system,” Int. J. Adv. Manuf. Technol. 34, 323–334 (2007).
[Crossref]

X. Zou, X. Zhao, G. Li, Z. Li, and T. Sun, “Non-contact on-machine measurement using a chromatic confocal probe for an ultra-precision turning machine,” Int. J. Adv. Manuf. Technol. 90, 2163–2172 (2017).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[Crossref]

Opt. Commun. (1)

G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun. 49, 229–233 (1984).
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (1)

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum. 80, 073706 (2009).
[Crossref]

Sensors (3)

G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation,” Sensors 9, 568–601 (2009).
[Crossref]

F. J. Brosed, J. J. Aguilar, D. Guillomía, and J. Santolaria, “3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot,” Sensors 11, 90–110 (2011).
[Crossref]

C. Yu, X. Chen, and J. Xi, “Modeling and calibration of a novel one-mirror galvanometric laser scanner,” Sensors 17, 164 (2017).
[Crossref]

Other (11)

S. Ito, M. Poik, E. Csencsics, J. Schlarp, and G. Schitter, “Scanning chromatic confocal sensor for fast 3D surface characterization,” in ASPE/euspen Summer Topical Meeting on Advancing Precision in Additive Manufacturing (to be published).

R. M. Schmidt, G. Schitter, and A. Rankers, The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration (IOS Press, 2014).

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (2000), pp. 131–144.

K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).

R. Schmitt and F. Moenning, “Ensure success with inline-metrology,” in XVIII IMEKO World Congress Metrology for a Sustainable Development (2006).

Micro-Epsilon Messtechnik GmbH & Co. KG, “OptoNCDT // Laser displacement sensors (triangulation), 2020, https://www.micro-epsilon.com/download/products/cat--optoNCDT--en-us.pdf .

C.-J. Weng, B.-R. Lu, P.-Y. Cheng, C.-H. Hwang, and C.-Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2017), pp. 1–5.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013).

G. Schröder and H. Treiber, Technische Optik (Vogel Buchverlag Munchen, 2007), vol. 8.

Micro-Epsilon Messtechnik GmbH & Co. KG, “ConfocalDT // Confocal chromatic sensor system,” 2020, https://www.micro-epsilon.com/download/products/cat--confocaldt--en.pdf .

Y. Petrov, “Github Optometrika,” 2020, https://www.github.com/caiuspetronius/optometrika .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Working principle of a confocal chromatic sensor. (a) Basic setup with the confocal principle selecting the wavelength that passes to the spectrometer. (b) Industrial realization where the sensor head is separated from the controller unit and an optical fiber replaces the pinholes.
Fig. 2.
Fig. 2. Concept of the tilted-lens confocal chromatic sensor (CCS). (a) Reduced optical layout of a confocal chromatic sensor head. (b) Labeled thick-lens approximation of the imaging light path.
Fig. 3.
Fig. 3. Results of the ray-tracing simulations performed in MATLAB. (a) Layout of the simulation: a divergent point light source illuminates an aperture preceding a plano-convex focusing lens. (b) Resulting positions of the measurement spots for three different wavelengths. (c) Axial positions of the measurement spot, compared to the analytic scanner bow. (d) Lateral scan range for one wavelength, compared to the analysis.
Fig. 4.
Fig. 4. Photo of the experimental setup consisting of two rotational stages and a confocal chromatic sensor head that is cut in two.
Fig. 5.
Fig. 5. Results of the calibration measurement on a flat reference sample. (a) Measurement result of the confocal chromatic sensor. (b) Comparison of the line indicated in (a) with the simulation.
Fig. 6.
Fig. 6. Measurement result for imaging a 20-cent Euro coin. (a) Photograph of the sample with the scanned region indicated by the red square. (b) Measurement result of the scanning confocal chromatic sensor. The white areas indicate measurement points where no valid values are obtained.
Fig. 7.
Fig. 7. Measurement result of the embossed “LEGO” imprint on the backside of a LEGO brick. The edges of the writing (white areas) are too steep to reflect enough light intensity to obtain a proper measurement signal. (a) Photograph of the sample with the scanned region indicated by the red square. (b) Measurement result of the scanning confocal chromatic sensor.
Fig. 8.
Fig. 8. Measurement result on a surface-mounted integrated circuit with two intact and two broken bond-wires. The two broken wires can be distinguished, and the height of the bond-wire loops can be determined. (a) Measurement result of the confocal chromatic sensor. (b) Photograph of the sample. A red rectangle marks the measured IC. (c) Three selected height profile lines [indicated in (a)].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ x = d sin ( α ) ,
z a b s = f g M cos ( α ) g M f + d cos ( α ) ,
Δ z = z a b s z i n i t = f g M cos ( α ) g M f f g M g M f + d ( cos ( α ) 1 ) .

Metrics