Abstract

Ultrashort pulse lasers are emerging as an advanced tool of distance measurement, with their unique temporal and spectral characteristics being extended to diverse principles of absolute ranging and instrumentation. Here, a systematic methodology is presented for absolute ranging by means of the time-of-flight measurement of ultrashort light pulses using dual-comb asynchronous optical sampling. Based on an elaborate uncertainty analysis, influencing system parameters such as the pulse duration, repetition rate, and averaging time are optimized to achieve a sub-µm measurement accuracy. The absolute ranging system developed in this study demonstrates a combined standard uncertainty of 0.986 µm for a 0.5 ms averaging over a distance range of 3.0 m, with a further reduction to 0.056 µm when the averaging time is increased to 0.5 s. The outstanding performance leads to unprecedented multitarget applications: machine feed control with thermal error compensation in real time as well as the nondestructive inspection of multilens assembly in a production line.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
    [Crossref]
  2. K. Creath, “V Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349–393.
  3. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1993).
    [Crossref]
  4. J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
    [Crossref]
  5. S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
    [Crossref]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  7. S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3, 313–314 (2009).
    [Crossref]
  8. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
    [Crossref]
  9. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
    [Crossref]
  10. K. Minoshima, “High-precision absolute length metrology using fiber-based optical frequency combs,” in International Conference on Electromagnetics in Advanced Applications (2010), pp. 800–802.
  11. Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
    [Crossref]
  12. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
    [Crossref]
  13. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47, 2715–2720 (2008).
    [Crossref]
  14. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006).
    [Crossref]
  15. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19, 6549–6562 (2011).
    [Crossref]
  16. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurement,” Opt. Lett. 38, 2026–2028 (2013).
    [Crossref]
  17. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29, 1153–1155 (2004).
    [Crossref]
  18. H. Wu, F. Zhang, T. Liu, P. Balling, J. Li, and X. Qu, “Long distance measurement using optical sampling by cavity tuning,” Opt. Lett. 41, 2366–2369 (2016).
    [Crossref]
  19. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17, 17324–17337 (2009).
    [Crossref]
  20. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  21. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
    [Crossref]
  22. J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
    [Crossref]
  23. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
    [Crossref]
  24. S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23, 25874–25882 (2015).
    [Crossref]
  25. G. Wu, S. Xiong, K. Ni, Z. Zhu, and Q. Zhou, “Parameter optimization of a dual-comb ranging system by using a numerical simulation method,” Opt. Express 23, 32044–32053 (2015).
    [Crossref]
  26. Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Digital correction method for realizing a phase-stable dual-comb interferometer,” Opt. Express 26, 16813–16823 (2018).
    [Crossref]
  27. H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “The effect of timing-jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23, 14057–14069 (2015).
    [Crossref]
  28. ISO, “Guide to the expression of uncertainty in measurement (GUM 1995),” ISO/IEC Guide 98–3 (2008).
  29. H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
    [Crossref]

2018 (1)

2016 (1)

2015 (5)

2014 (2)

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

2013 (1)

2012 (1)

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

2011 (2)

2010 (1)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

2009 (3)

S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3, 313–314 (2009).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17, 17324–17337 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

2008 (1)

2006 (2)

2004 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2000 (2)

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[Crossref]

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

1994 (1)

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

1993 (1)

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1993).
[Crossref]

Araki, T.

Balling, P.

Baumann, E.

Bender, P. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Bhattacharya, N.

Bobroff, N.

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1993).
[Crossref]

Bosse, H.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Buller, G. S.

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Chen, Y. L.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Coddington, I.

Cova, S.

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Creath, K.

K. Creath, “V Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349–393.

Cui, M.

Dickey, J. O.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Estler, W. T.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Faller, J. E.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Gao, W.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Giorgetta, F. R.

Hagihara, Y.

Haitjema, H.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Han, S.

S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23, 25874–25882 (2015).
[Crossref]

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hu, M.

Jang, H.

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Jang, Y.-S.

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

Jin, J.

Joo, K.-N.

Kang, C.-S.

Kim, S.

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Kim, S.-W.

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23, 25874–25882 (2015).
[Crossref]

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3, 313–314 (2009).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[Crossref]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006).
[Crossref]

Kim, Y.

Kim, Y.-J.

S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23, 25874–25882 (2015).
[Crossref]

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[Crossref]

Knabe, K.

Knapp, W.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Kunzmann, H.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Le Floch, S.

Lee, J.

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, K.

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lévêque, S.

Li, J.

Li, Y.

Liang, F.

Liu, T.

Lu, X. D.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Matsumoto, H.

Minoshima, K.

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
[Crossref]

K. Minoshima, “High-precision absolute length metrology using fiber-based optical frequency combs,” in International Conference on Electromagnetics in Advanced Applications (2010), pp. 800–802.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N. R.

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurement,” Opt. Lett. 38, 2026–2028 (2013).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newhall, X.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Ni, K.

Pellegrin, S.

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Qu, X.

Ricklefs, R. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Salvadé, Y.

Schuhler, N.

Shelus, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Shi, H.

Sinclair, L. C.

Smith, J. M.

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Song, Y.

Swann, W. C.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Urbach, H. P.

van den Berg, S. A.

Veillet, C.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Wallace, A. M.

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Wang, C.

Weckenmann, A.

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Wei, H.

Whipple, A. L.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Wiant, J. R.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Williams, J. G.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Wu, G.

Wu, H.

Wu, X.

Xiong, S.

Xu, L.

Yang, H.

Yasui, T.

Ye, J.

Yoder, C. F.

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Yokoyama, S.

Yokoyama, T.

Zeitouny, M. G.

Zhang, F.

Zhang, H.

Zhou, Q.

Zhu, Z.

Appl. Opt. (2)

CIRP Ann. (1)

W. Gao, S.-W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64, 773–796 (2015).
[Crossref]

Laser Phys. Lett. (1)

H. Jang, Y.-S. Jang, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Polarization maintaining linear cavity Er-doped fiber femtosecond laser,” Laser Phys. Lett. 12, 105102 (2015).
[Crossref]

Meas. Sci. Technol. (3)

J. Lee, K. Lee, S. Lee, S.-W. Kim, and Y.-J. Kim, “High precision laser ranging by time-of-flight measurement of femtosecond pulses,” Meas. Sci. Technol. 23, 065203 (2012).
[Crossref]

N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907 (1993).
[Crossref]

S. Pellegrin, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712–716 (2000).
[Crossref]

Nat. Photonics (4)

S.-W. Kim, “Metrology: combs rule,” Nat. Photonics 3, 313–314 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5, 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Opt. Eng. (1)

Y.-S. Jang, K. Lee, S. Han, J. Lee, Y.-J. Kim, and S.-W. Kim, “Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser,” Opt. Eng. 53, 122403 (2014).
[Crossref]

Opt. Express (9)

J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, “Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser,” Opt. Express 14, 5968–5974 (2006).
[Crossref]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14, 5954–5960 (2006).
[Crossref]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19, 6549–6562 (2011).
[Crossref]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17, 17324–17337 (2009).
[Crossref]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22, 6597–6604 (2014).
[Crossref]

S. Han, Y.-J. Kim, and S.-W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23, 25874–25882 (2015).
[Crossref]

G. Wu, S. Xiong, K. Ni, Z. Zhu, and Q. Zhou, “Parameter optimization of a dual-comb ranging system by using a numerical simulation method,” Opt. Express 23, 32044–32053 (2015).
[Crossref]

Z. Zhu, K. Ni, Q. Zhou, and G. Wu, “Digital correction method for realizing a phase-stable dual-comb interferometer,” Opt. Express 26, 16813–16823 (2018).
[Crossref]

H. Shi, Y. Song, F. Liang, L. Xu, M. Hu, and C. Wang, “The effect of timing-jitter on time-of-flight distance measurements using dual femtosecond lasers,” Opt. Express 23, 14057–14069 (2015).
[Crossref]

Opt. Lett. (3)

Science (1)

J. O. Dickey, P. L. Bender, J. E. Faller, X. Newhall, R. L. Ricklefs, J. G. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Williams, and C. F. Yoder, “Lunar laser ranging: a continuing legacy of the Apollo program,” Science 265, 482–540 (1994).
[Crossref]

Other (3)

K. Creath, “V Phase-measurement interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), Vol. 26, pp. 349–393.

K. Minoshima, “High-precision absolute length metrology using fiber-based optical frequency combs,” in International Conference on Electromagnetics in Advanced Applications (2010), pp. 800–802.

ISO, “Guide to the expression of uncertainty in measurement (GUM 1995),” ISO/IEC Guide 98–3 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Absolute ranging to multiple targets aligned along a single axis. (a) System configuration of dual-comb optical cross-correlation. (b) Timescale relaxation in dual-comb asynchronous optical sampling. (c) Exemplary applications: (upper) simultaneous monitoring of stage positions and machine structural deformation; (lower) nondestructive inspection of a lens assembly. Abbreviations: PM, partially reflecting mirror; Ref., reference mirror; PBS, polarizing beam splitter; PPKTP, periodically poled potassium titanyl phosphate crystal; DM, dichroic mirror; HWP, half-wave plate; XCOR, cross correlation; PD, photodetector; LPF, low pass filter; fr, repetition rate; Rb, rubidium; Cir, circulator; and Col, collimator.
Fig. 2.
Fig. 2. Measurement system design. (a) Uncertainty analysis: (a-1) combined standard uncertainty and (a-2) optimal repetition rate difference. (b) Hardware configuration: (b-1) dual-comb light source unit; (b-2) signal laser characteristics; and (b-3) local oscillator characteristics. (c) Single-shot measurement repeatability versus $\Delta\! {f_r}$. (d) Fundamental performance: (d-1) distance fluctuation versus data averaging and (d-2) Allan deviation versus ${f_r}$.
Fig. 3.
Fig. 3. Absolute measurement results. (a) Experimental setup. (b) Standard deviation of single-shot measurements for three repetition rates. (c) Linearity test results. (d) Absolute ranging with beam interruption. (e) Absolute ranging results.
Fig. 4.
Fig. 4. Absolute ranging of multiple targets. (a) Experiment setup. (b) Measured distances. (c) Time variation of measured distances of ${D_1}$, ${D_2}$, ${D_3}$, and ${D_4}$. (d) Measured distance between target reflectors. (e) Noninvasive inspection: (e-1) measurement setup; (e-2) ranging signal of single-shot measurement; (e-3) ranging signal for averaging 100 measurements; and (e-4) measured locations of lens surfaces in consideration of the refractive index of each lens component.

Tables (1)

Tables Icon

Table 1. Combined Uncertainty ( k = 1 ) for f r = 194.5 M H z and Δ f r = 25 k H z (Upper) and Uncertainty Comparison for f r = 50 , 100, 194.5 MHz (Lower)a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D = m D N A R + D F = m c 2 N f r + c 2 N Δ f r f r Δ τ ,
u ( D ) = c Δ τ 2 u ( Δ τ ) 2 + c Δ f r 2 u ( Δ f r ) 2 + c N 2 u ( N ) 2 + c f r 2 u ( f r ) 2 ,
u ( Δ τ ) = α ( f r Δ f r ) β + γ ( t s l i p Δ T p u l s e ) δ = α ( f r Δ f r ) β + γ ( Δ f r / f r 2 Δ T p u l s e ) δ ,

Metrics