Abstract

Optical coherence tomography (OCT) is a high-resolution three-dimensional imaging technique that enables nondestructive measurements of surface and subsurface microstructures. Recent developments of OCT operating in the mid-infrared (MIR) range (around 4 µm) lifted fundamental scattering limitations and initiated applied material research in formerly inaccessible fields. The MIR spectral region, however, is also of great interest for spectroscopy and hyperspectral imaging, which allow highly selective and sensitive chemical studies of materials. In this contribution, we introduce an OCT system (dual-band, central wavelengths of 2 µm and 4 µm) combined with MIR spectroscopy that is implemented as a raster scanning chemical imaging modality. The fully integrated and cost-effective optical instrument is based on a single supercontinuum laser source (emission spectrum spanning from 1.1 µm to 4.4 µm). Capabilities of the in situ correlative measurements are experimentally demonstrated by obtaining complex multidimensional material data, comprising morphological and chemical information, from a multilayered composite ceramic-polymer specimen.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-band infrared optical coherence tomography using a single supercontinuum source

Ivan Zorin, Paul Gattinger, Markus Brandstetter, and Bettina Heise
Opt. Express 28(6) 7858-7874 (2020)

Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array

Ivan Zorin, Rong Su, Andrii Prylepa, Jakob Kilgus, Markus Brandstetter, and Bettina Heise
Opt. Express 26(25) 33428-33439 (2018)

Broadband near-infrared hyperspectral single pixel imaging for chemical characterization

Paul Gattinger, Jakob Kilgus, Ivan Zorin, Gregor Langer, Ramin Nikzad-Langerodi, Christian Rankl, Martin Gröschl, and Markus Brandstetter
Opt. Express 27(9) 12666-12672 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
    [Crossref]
  2. S. David, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
    [Crossref]
  3. J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.
  4. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
    [Crossref]
  5. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22, 15804–15819 (2014).
    [Crossref]
  6. I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26, 33428–33439 (2018).
    [Crossref]
  7. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
    [Crossref]
  8. I. Zorin, P. Gattinger, M. Brandstetter, and B. Heise, “Dual-band infrared optical coherence tomography using a single supercontinuum source,” Opt. Express 28, 7858–7874 (2020).
    [Crossref]
  9. D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
    [Crossref]
  10. H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
    [Crossref]
  11. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2  µm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39, 6509–6512 (2014).
    [Crossref]
  12. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
    [Crossref]
  13. I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” Proc. SPIE 11058, 11058N (2019).
    [Crossref]
  14. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).
  15. H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
    [Crossref]
  16. C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26, 12169–12179 (2018).
    [Crossref]
  17. I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc. 74, 485–493 (2020).
    [Crossref]
  18. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
    [Crossref]
  19. F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
    [Crossref]
  20. J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
    [Crossref]
  21. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
    [Crossref]
  22. M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
    [Crossref]
  23. D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
    [Crossref]
  24. A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44, 4223–4226 (2019).
    [Crossref]
  25. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [Crossref]
  26. J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact Fabry–Pérot filter spectrometers,” Appl. Spectrosc. 72, 634–642 (2018).
    [Crossref]
  27. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
    [Crossref]
  28. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
    [Crossref]
  29. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  30. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
    [Crossref]
  31. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  µm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
    [Crossref]
  32. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
    [Crossref]
  33. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
    [Crossref]
  34. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
    [Crossref]
  35. E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
    [Crossref]
  36. A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
    [Crossref]
  37. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [Crossref]
  38. H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: a review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 53, 91–111 (2018).
    [Crossref]
  39. D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
    [Crossref]
  40. O. Svelto, Principles of Lasers (Springer, 2010).
  41. M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
    [Crossref]
  42. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
    [Crossref]
  43. A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2011).
  44. D. E. Marshall, “A review of pyroelectric detector technology,” Proc. SPIE 0132, 110–117 (1978).
    [Crossref]
  45. A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27, 824–829 (1991).
    [Crossref]
  46. W. W. Daniels and R. E. Kitson, “Infrared spectroscopy of polyethylene terephthalate,” J. Polym. Sci. 33, 161–170 (1958).
    [Crossref]
  47. J. Karger-Kocsis, ed., Infrared and Raman Spectroscopy of Polypropylene (Springer, 1999), pp. 320–328.
  48. D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
    [Crossref]
  49. J. M. Chalmers and P. R. Griffiths, eds., Handbook of Vibrational Spectroscopy: Chalmers Vibrat 5V Set (Wiley, 2001).
  50. M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
    [Crossref]
  51. P. R. Griffiths and J. A. de Haseth, “Conventional transmission spectrometry,” in Fourier Transform Infrared Spectrometry (Wiley, 2006), pp. 251–260, Chap. 11.
  52. L. H. Negri and C. Vestri, “lucashn/peakutils: v1.1.0,” https://doi.org/10.5281/zenodo.887917 (2017).

2020 (4)

I. Zorin, P. Gattinger, M. Brandstetter, and B. Heise, “Dual-band infrared optical coherence tomography using a single supercontinuum source,” Opt. Express 28, 7858–7874 (2020).
[Crossref]

H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
[Crossref]

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc. 74, 485–493 (2020).
[Crossref]

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

2019 (7)

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44, 4223–4226 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” Proc. SPIE 11058, 11058N (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

2018 (10)

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: a review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 53, 91–111 (2018).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26, 33428–33439 (2018).
[Crossref]

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26, 12169–12179 (2018).
[Crossref]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact Fabry–Pérot filter spectrometers,” Appl. Spectrosc. 72, 634–642 (2018).
[Crossref]

2017 (5)

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (5)

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2  µm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39, 6509–6512 (2014).
[Crossref]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22, 15804–15819 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
[Crossref]

2012 (2)

2011 (2)

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

2008 (1)

2007 (2)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

S. David, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

2000 (1)

1991 (1)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27, 824–829 (1991).
[Crossref]

1978 (1)

D. E. Marshall, “A review of pyroelectric detector technology,” Proc. SPIE 0132, 110–117 (1978).
[Crossref]

1958 (1)

W. W. Daniels and R. E. Kitson, “Infrared spectroscopy of polyethylene terephthalate,” J. Polym. Sci. 33, 161–170 (1958).
[Crossref]

Aalto, A.

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agger, C.

Alvarez, O.

Bang, O.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Bedford, R.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Berer, T.

Birarda, G.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Bondu, M.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

Borondics, F.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
[Crossref]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Bowen, P.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
[Crossref]

Bradu, A.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Brandstetter, M.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc. 74, 485–493 (2020).
[Crossref]

I. Zorin, P. Gattinger, M. Brandstetter, and B. Heise, “Dual-band infrared optical coherence tomography using a single supercontinuum source,” Opt. Express 28, 7858–7874 (2020).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” Proc. SPIE 11058, 11058N (2019).
[Crossref]

C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26, 12169–12179 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26, 33428–33439 (2018).
[Crossref]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact Fabry–Pérot filter spectrometers,” Appl. Spectrosc. 72, 634–642 (2018).
[Crossref]

Brés, C.-S.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Brilland, L.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Chan, A.

Chang, E. W.

Chang, S.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Chenard, F.

Cheng, T.

Cheung, C. S.

Choo-Smith, L.-P.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Clarkson, W. A.

Dai, S.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Daniel, J. M. O.

Daniels, W. W.

W. W. Daniels and R. E. Kitson, “Infrared spectroscopy of polyethylene terephthalate,” J. Polym. Sci. 33, 161–170 (1958).
[Crossref]

Dasa, M. K.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

David, S.

S. David, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, “Conventional transmission spectrometry,” in Fourier Transform Infrared Spectrometry (Wiley, 2006), pp. 251–260, Chap. 11.

Demšar, J.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Denninger, M.

Disano, J.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Dong, Y.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Drexler, W.

Dudley, J. M.

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Dumas, P.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

Duswald, K.

Engelsholm, R. D.

Farries, M.

Feng, Y.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Feuchter, T.

Février, S.

Flueraru, C.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Freeman, M. J.

Fujimoto, J. G.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaponov, D.

Gasser, C.

Gattinger, P.

Genier, E.

Genty, G.

Ghosh, A. N.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Gibson, R.

Golde, J.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

González-Benito, J.

D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
[Crossref]

Gonzalo, I. B.

Grassani, D.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, “Conventional transmission spectrometry,” in Fourier Transform Infrared Spectrometry (Wiley, 2006), pp. 251–260, Chap. 11.

Guelachvili, G.

Guo, H.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Guo, K.

Han, X.

Hangyo, M.

H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
[Crossref]

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

Harasek, M.

Heise, B.

Herkommer, C.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Hideur, A.

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

Hossain, A.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27, 824–829 (1991).
[Crossref]

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

Ifarraguerri, A. I.

Ippen, E. P.

Islam, M. N.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Janiszewski, B.

Jensen, M.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Jossent, M.

Kärtner, F. X.

Keiding, S. R.

Khinast, J.

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

Kilgus, J.

Kippenberg, T. J.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Kirillin, M.

Kirsten, L.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

Kitahara, H.

H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
[Crossref]

Kitson, R. E.

W. W. Daniels and R. E. Kitson, “Infrared spectroscopy of polyethylene terephthalate,” J. Polym. Sci. 33, 161–170 (1958).
[Crossref]

Koch, E.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

Koller, D.

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

Koutsikou, S.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Kumar, M.

Langer, G.

Lavoute, L.

Leick, L.

Leitner, M.

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

Lendl, B.

Li, G.

Li, X. D.

Liang, H.

Lin, H.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Liu, J.

Liu, K.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Lloyd, G. R.

Mandon, J.

Manzur, T.

Mao, Y.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Maria, M.

Markl, D.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Markos, C.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

Marshall, D. E.

D. E. Marshall, “A review of pyroelectric detector technology,” Proc. SPIE 0132, 110–117 (1978).
[Crossref]

Martín, E. V.

D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
[Crossref]

Martinez, R. A.

Matsumoto, M.

Mattsson, L.

Maynard, R. L.

Meneghetti, M.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Messa, G.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Morgner, U.

Moselund, P.

Moselund, P. M.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

Nagasaka, K.

Nallala, J.

Nam, H. S.

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: a review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 53, 91–111 (2018).
[Crossref]

Napier, B.

Neelakandan, M.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Nteroli, G.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Ohishi, Y.

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

Olmos, D.

D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
[Crossref]

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Peng, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Petersen, C.

Petersen, C. R.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Picqué, N.

Pitris, C.

Plant, G.

Podoleanu, A.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

Popescu, D. P.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Prtljaga, N.

Prylepa, A.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Rashid, M. H.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27, 824–829 (1991).
[Crossref]

Read, S.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Rogalski, A.

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2011).

Rosendahl, S. M.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Ryczkowski, P.

Saleh, A.

Sandt, C.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica 5, 378–381 (2018).
[Crossref]

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Schnabel, C.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sergeeva, E.

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Shen, Y.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Sherif, S.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Shi, H.

Sorokin, E.

Sorokina, I. T.

Sowa, M. G.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Stone, N.

Su, R.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Suzuki, T.

Svelto, O.

O. Svelto, Principles of Lasers (Springer, 2010).

Sylvestre, T.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
[Crossref]

Tagkoudi, E.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Tan, F.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tani, M.

H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
[Crossref]

Terry, F. L.

Tezuka, H.

Thøgersen, J.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Toivonen, J.

Tokurakawa, M.

Toplak, M.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Troles, J.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Tuan, T. H.

Vaccari, L.

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Venck, S.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

Walther, J.

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

Wang, P.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Wang, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

Wang, Y.

Ward, J.

Williams, B. M.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Xu, D.

Xu, P.

Xu, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Xue, X.

Yang, F.

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Yoo, H.

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: a review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 53, 91–111 (2018).
[Crossref]

You, C.

Yun, S. H.

Zeitler, J. A.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Zhang, P.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Zheng, Y.

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zimmerleiter, R.

Zorin, I.

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

S. David, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

H. Kitahara, M. Tani, and M. Hangyo, “Frequency-domain optical coherence tomography system in the terahertz region,” Appl. Phys. B 126, 22 (2020).
[Crossref]

Appl. Sci. (1)

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8, 707 (2018).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

H. S. Nam and H. Yoo, “Spectroscopic optical coherence tomography: a review of concepts and biomedical applications,” Appl. Spectrosc. Rev. 53, 91–111 (2018).
[Crossref]

Biophys. Rev. (1)

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev. 3, 155 (2011).
[Crossref]

Euro. J. Pharm. Sci. (1)

D. Koller, G. Hannesschläger, M. Leitner, and J. Khinast, “Non-destructive analysis of tablet coatings with optical coherence tomography,” Euro. J. Pharm. Sci. 44, 142–148 (2011).
[Crossref]

IEEE Trans. Ind. Appl. (1)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27, 824–829 (1991).
[Crossref]

Infrared Phys. Technol (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol 91, 182–186 (2018).
[Crossref]

J. Biomed. Opt. (1)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12, 051403 (2007).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Pharm. Sci. (1)

H. Lin, Y. Dong, D. Markl, B. M. Williams, Y. Zheng, Y. Shen, and J. A. Zeitler, “Measurement of the intertablet coating uniformity of a pharmaceutical pan coating process with combined terahertz and optical coherence tomography in-line sensing,” J. Pharm. Sci. 106, 1075–1084 (2017).
[Crossref]

J. Phys. (1)

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” J. Phys. 1, 044003 (2019).
[Crossref]

J. Polym. Sci. (1)

W. W. Daniels and R. E. Kitson, “Infrared spectroscopy of polyethylene terephthalate,” J. Polym. Sci. 33, 161–170 (1958).
[Crossref]

Laser Photon. Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16  µm in a low-loss telluride single-mode fiber,” Laser Photon. Rev. 11, 1700005 (2017).
[Crossref]

Light Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light Sci. Appl. 8, 2047–7538 (2019).
[Crossref]

Nat. Commun. (1)

D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, and C.-S. Brés, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3  µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Opt. Express (8)

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8  W average output power,” Opt. Express 22, 24384–24391 (2014).
[Crossref]

I. Zorin, P. Gattinger, M. Brandstetter, and B. Heise, “Dual-band infrared optical coherence tomography using a single supercontinuum source,” Opt. Express 28, 7858–7874 (2020).
[Crossref]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22, 15804–15819 (2014).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26, 33428–33439 (2018).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26, 30644–30654 (2018).
[Crossref]

C. Gasser, J. Kilgus, M. Harasek, B. Lendl, and M. Brandstetter, “Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser,” Opt. Express 26, 12169–12179 (2018).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution Fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source,” Opt. Express 23, 1992–2001 (2015).
[Crossref]

Opt. Lett. (9)

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43, 999–1002 (2018).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2  µm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39, 6509–6512 (2014).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1  µm in a chalcogenide step-index fiber,” Opt. Lett. 41, 2117–2120 (2016).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4–7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42, 3458–3461 (2017).
[Crossref]

A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44, 4223–4226 (2019).
[Crossref]

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008).
[Crossref]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43, 296–299 (2018).
[Crossref]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

M. Maria, I. B. Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref]

Optica (1)

Photoacoustics (1)

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Phys. Chem. Chem. Phys. (1)

D. Olmos, E. V. Martín, and J. González-Benito, “New molecular-scale information on polystyrene dynamics in PS and Ps–BaTiO3 composites from FTIR spectroscopy,” Phys. Chem. Chem. Phys. 16, 24339–24349 (2014).
[Crossref]

Proc. SPIE (2)

D. E. Marshall, “A review of pyroelectric detector technology,” Proc. SPIE 0132, 110–117 (1978).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” Proc. SPIE 11058, 11058N (2019).
[Crossref]

Synchrotron Radiat. News (1)

M. Toplak, G. Birarda, S. Read, C. Sandt, S. M. Rosendahl, L. Vaccari, J. Demšar, and F. Borondics, “Infrared orange: connecting hyperspectral data with machine learning,” Synchrotron Radiat. News 30, 40–45 (2017).
[Crossref]

Other (8)

P. R. Griffiths and J. A. de Haseth, “Conventional transmission spectrometry,” in Fourier Transform Infrared Spectrometry (Wiley, 2006), pp. 251–260, Chap. 11.

L. H. Negri and C. Vestri, “lucashn/peakutils: v1.1.0,” https://doi.org/10.5281/zenodo.887917 (2017).

J. M. Chalmers and P. R. Griffiths, eds., Handbook of Vibrational Spectroscopy: Chalmers Vibrat 5V Set (Wiley, 2001).

J. Karger-Kocsis, ed., Infrared and Raman Spectroscopy of Polypropylene (Springer, 1999), pp. 320–328.

A. Rogalski, Infrared Detectors, 2nd ed. (CRC Press, 2011).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer, 2008).

J. Golde, L. Kirsten, C. Schnabel, J. Walther, and E. Koch, Optical Coherence Tomography for NDE (Springer, 2018), pp. 1–44.

O. Svelto, Principles of Lasers (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Spectrum of the supercontinuum source measured using an FTIR spectrometer; the sensitivity curve of the MCT detector is used to correct distortions of the spectral shape; the ranges exploited for OCT and spectroscopic imaging are indicated.
Fig. 2.
Fig. 2. Scheme of the OCT and spectroscopic imaging system (SM); detection systems of the modalities are indicated.
Fig. 3.
Fig. 3. Characterized spectral resolution (50 nm to 75 nm at FWHM) of the Fabry–Perot tunable filter; transmission at different control voltages, measured using an FTIR spectrometer equipped with a thermal emitter; absorption of ${{\rm CO}_2}$ around 4235 nm is observed.
Fig. 4.
Fig. 4. Spatial resolution of the imaging system characterized in the extreme spectral subbands of the multimodal system [center wavelengths of (a) 2 µm and (b) 4 µm] using a 1951 USAF resolution test target; performed using OCT modality (en-face images); a neutral density filter (optical density of 0.3) was used for evaluation.
Fig. 5.
Fig. 5. Schematic model of the multilayered composite test sample; 50 µm thick polymer films (shown in blue color)—polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP)—are embedded in between the alumina ceramics; the top interfaces of the ceramic plates are rough, and the bottom surfaces are epi-polished.
Fig. 6.
Fig. 6. Tomographic imaging of the multilayered ceramics-polymer stack by means of the dual-band IR OCT modality: (a) B-scan (high resolution 2 µm OCT) of the top section of the sample, the ceramic plate, and polymer films are revealed; the air gap between the ceramics and films is partially detectable (visualized and indicated in the inset). (b) C-scan of the sample obtained by means of 4 µm OCT; the complete structure is accessed. (c) En-face image of the polymer films embedded in between the ceramic stack (4 µm OCT) revealing morphological information but no chemical information of the polymers (types of the polymers are denoted). En-face image of the polymer flims inserted between the plates (denoted).
Fig. 7.
Fig. 7. Correlative MIR hyperspectral images of the multilayered ceramic-polymer stack, visualized as false-color absorbance images integrated within different spectral regions (resulting in a single absorbance value for each position); the polymer films can be differentiated and identified; the clearly visible interference patterns (fringes) are introduced by the multiple reflections within the thin air gap between the polymer films and the rear polished surface of the ceramic plate.
Fig. 8.
Fig. 8. Spectra evaluation of the embedded polymers: (a) absorbance spectra of the polymer flims embedded in the ceramic stack, spatially averaged over the scanned areas, experimental system, MIR spectroscopy modality (resolution $40\;{\rm cm}^{-1}$) and (b) reference FTIR measurements of the polymers confirming the accuracy of the spectroscopic investigation: absorbance spectra of the blank polymer flims, a commercial FTIR spectrometer equipped with a thermal emitter (resolution $4\;{\rm cm}^{-1}$).
Fig. 9.
Fig. 9. Thickness map of the air gap between the top ceramic plate and the polymer films; the profile is retrieved using the hyperspectral data, i.e., spectral fringes originated from constructive and destructive interference due to the multiple reflections within the air gap.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = N 2 n ( ν 1 ν 2 ) ,

Metrics