Abstract

Any optical structure possesses resonance modes, and its response to an excitation can be decomposed onto the quasinormal and numerical modes of a discretized Maxwell operator. In this paper, we consider a dielectric permittivity that is an N-pole Lorentz function of the frequency. Even for discretized operators, the literature proposes different formulas for the coefficients of the quasinormal-mode expansion, and this comes as a surprise. We propose a general formalism, based on auxiliary fields, which explains why and evidences that there is, in fact, an infinity of mathematically sound possible expansion coefficients. The nonuniqueness is due to a choice of the linearization of Maxwell’s equations with respect to frequency and of the choice of the form of the source term. Numerical results validate the different formulas and compare their accuracy.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription