Abstract

Fourier microscopy, which makes direct observation of the angular distribution possible, is widely used in the nanooptics community. The theory of such systems is typically based on ideal lenses. However, the real lenses in the typical complex lens systems have an impact on the image quality in the experiment. Therefore, it is desirable to have a model of the entire system, which is capable of predicting such phenomena, in order to conduct a preliminary detailed analysis of the setup before building it in the lab. In this work, we perform a vectorial physical-optics simulation of Fourier microscopy systems, which considers the real lenses; it also includes the nanostructure (e.g., photonic crystal). The systems are used to image the emission diagram of a single molecule as well as to analyze the angular-spectral property of a photonic crystal. We analyze various effects of the entire systems, e.g., Fresnel effects of the real lens surfaces, diffraction, polarization, chromatic aberration, and the effects of misalignment. We find that the above-mentioned effects have an influence on the final results, which should be taken into account when performing similar real-life experiments.

© 2020 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription