Abstract

A large number of studies have shown the effect of melanopsin-dependent retinal ganglion cells on humans performing brightness discrimination tasks. These studies often utilized targets that only differ in their melanopsin activation levels, and not in their luminance or hue, which are both factors that make large contributions to brightness discrimination. The purpose of the present study was to evaluate the relative contribution of melanopsin activation to brightness discrimination when luminance and hue are also varying in addition to melanopsin activation. Using an apparatus consisting of three separate high luminance projectors, we were able to manipulate melanopsin-isolating stimulation, and L-, M-, and S-cone stimulation separately, thus allowing us to vary stimuli in their melanopsin activation, luminance, and hue category independently. We constructed three sets of target stimuli with three different levels of melanopsin activation (100%, 131%, and 167% relative melanopsin excitation) and five levels of luminance. We then had subjects do a two-alternative forced choice task where they compared the previously described target stimuli set to a set of four comparison stimuli that varied in their hue category but had identical luminances. We found that in our stimuli set the overall contribution of melanopsin activity to brightness discrimination was small (an average of 6% increase in likelihood to call a high melanopsin activity stimulus brighter compared to a low melanopsin activity stimulus) when luminance and hue also varied. However, a significant interaction showed that when the comparison was between stimuli differing only in melanopsin stimulation (with luminance and hue unchanged) the contribution of melanopsin to brightness judgments was about 3 times larger (an average of 18% increase in likelihood to call a high melanopsin activity stimulus brighter compared to a low melanopsin activity stimulus). This suggests that although luminance and hue have large effects on brightness discrimination such that the melanopsin contribution can become hard to detect, when there are minimal cone-dependent signals available, melanopsin can make a large contribution to brightness discrimination.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cone and melanopsin contributions to human brightness estimation

Andrew J. Zele, Prakash Adhikari, Beatrix Feigl, and Dingcai Cao
J. Opt. Soc. Am. A 35(4) B19-B25 (2018)

Rhodopsin and melanopsin contributions to human brightness estimation

Andrew J. Zele, Ashim Dey, Prakash Adhikari, and Beatrix Feigl
J. Opt. Soc. Am. A 37(4) A145-A153 (2020)

Evidence for an impact of melanopsin activation on unique white perception

Dingcai Cao, Adam Chang, and Shaoyan Gai
J. Opt. Soc. Am. A 35(4) B287-B291 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Chapanis and R. M. Halsey, “Luminance of equally bright colors,” J. Opt. Soc. Am. 45, 1–6 (1955).
    [Crossref]
  2. R. J. Ball and S. Howard Bartley, “Changes in brightness index, saturation, and hue produced by luminance–wavelength–temporal interactions,” J. Opt. Soc. Am. 56, 695–699 (1966).
    [Crossref]
  3. S. A. Burns, V. C. Smith, J. Pokorny, and A. E. Elsner, “Brightness of equal-luminance lights,” J. Opt. Soc. Am. 72, 1225–1231 (1982).
    [Crossref]
  4. K. Uchikawa, K. Koida, T. Meguro, Y. Yamauchi, and I. Kuriki, “Brightness, not luminance, determines transition from the surface-color to the aperture-color mode for colored lights,” J. Opt. Soc. Am. A 18, 737–746 (2001).
    [Crossref]
  5. T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
    [Crossref]
  6. T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
    [Crossref]
  7. T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
    [Crossref]
  8. D. Cao, A. Chang, and S. Gai, “Evidence for an impact of melanopsin activation on unique white perception,” J. Opt. Soc. Am. A 35, B287–B291 (2018).
    [Crossref]
  9. A. J. Zele, P. Adhikari, B. Feigl, and D. Cao, “Cone and melanopsin contributions to human brightness estimation,” J. Opt. Soc. Am. A 35, B19–B25 (2018).
    [Crossref]
  10. M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
    [Crossref]
  11. P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
    [Crossref]
  12. S.-I. Tsujimura and Y. Tokuda, “Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex,” Ophthalmic Physiolog. Opt. 31, 469–479 (2011).
    [Crossref]
  13. S. L. Buck, A. Shelton, B. Stoehr, V. Hadyanto, M. Tang, T. Morimoto, and T. DeLawyer, “Influence of surround proximity on induction of brown and darkness,” J. Opt. Soc. Am. A 33, A12–A21 (2016).
    [Crossref]
  14. D. L. Bimler, G. V. Paramei, and C. A. Izmailov, “Hue and saturation shifts from spatially induced blackness,” J. Opt. Soc. Am. A 26, 163–172 (2009).
    [Crossref]
  15. M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
    [Crossref]
  16. J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vision Res. 19, 891–901 (1979).
    [Crossref]
  17. M. D. Fairchild and L. Reniff, “Time course of chromatic adaptation for color-appearance judgments,” J. Opt. Soc. Am. A 12, 824–833 (1995).
    [Crossref]
  18. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
    [Crossref]
  19. G. R. Loftus and E. J. M. Michael, “Using confidence intervals in within-subject designs,” Psychonomic Bull. Rev. 1, 476–490 (1994).
    [Crossref]
  20. M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
    [Crossref]
  21. M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
    [Crossref]
  22. A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
    [Crossref]
  23. T. DeLawyer, M. Tayon, C.-L. Yu, and S. L. Buck, “Contrast-dependent red-green balance shifts depend on S-cone activity,” J. Opt. Soc. Am. A 35, B114–B121 (2018).
    [Crossref]
  24. S. L. Buck, F. Rieke, and T. DeLawyer, “Contrast-dependent red-green hue shift,” J. Opt. Soc. Am. A 35, B136–B143 (2018).
    [Crossref]
  25. T. De Lawyer, “Brown induction and red-green hue shifts,” Ph.D. dissertation (University of Washington, 2017).

2019 (2)

M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
[Crossref]

2018 (6)

2017 (1)

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

2016 (1)

2012 (1)

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

2011 (2)

S.-I. Tsujimura and Y. Tokuda, “Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex,” Ophthalmic Physiolog. Opt. 31, 469–479 (2011).
[Crossref]

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

2010 (1)

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

2009 (1)

2007 (1)

M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
[Crossref]

2001 (1)

2000 (1)

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

1995 (1)

1994 (1)

G. R. Loftus and E. J. M. Michael, “Using confidence intervals in within-subject designs,” Psychonomic Bull. Rev. 1, 476–490 (1994).
[Crossref]

1982 (1)

1979 (1)

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vision Res. 19, 891–901 (1979).
[Crossref]

1966 (1)

1955 (1)

Adhikari, P.

Aguirre, G. K.

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Allen, A. E.

A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
[Crossref]

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Ball, R. J.

Bedford, R.

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Berger, T.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vision Res. 19, 891–901 (1979).
[Crossref]

Bimler, D. L.

Bock, A. S.

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Brainard, D.

M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
[Crossref]

Brainard, D. H.

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Brown, T. M.

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Buck, S. L.

Burns, S. A.

Cao, D.

Chang, A.

Chapanis, A.

Coffey, P. J.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Dacey, D.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

De Lawyer, T.

T. De Lawyer, “Brown induction and red-green hue shifts,” Ph.D. dissertation (University of Washington, 2017).

DeLawyer, T.

Do, M. T.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

Elsner, A. E.

Fairchild, M. D.

Feigl, B.

Frazzetta, G.

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Gai, S.

Gegenfurtner, K. R.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

Gias, C.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Gigg, J.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Hadyanto, V.

Halsey, R. M.

Hatori, M.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Hattar, S.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

Howard Bartley, S.

Izmailov, C. A.

Keding, S. R.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Kleiner, M.

M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
[Crossref]

Koida, K.

Kuriki, I.

Loftus, G. R.

G. R. Loftus and E. J. M. Michael, “Using confidence intervals in within-subject designs,” Psychonomic Bull. Rev. 1, 476–490 (1994).
[Crossref]

Loomis, J. M.

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vision Res. 19, 891–901 (1979).
[Crossref]

Lucas, R.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

Lucas, R. J.

A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
[Crossref]

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Martial, F. P.

A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
[Crossref]

Matsumoto, A.

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Matynia, A.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

Meguro, T.

Michael, E. J. M.

G. R. Loftus and E. J. M. Michael, “Using confidence intervals in within-subject designs,” Psychonomic Bull. Rev. 1, 476–490 (1994).
[Crossref]

Morimoto, T.

Okajima, K.

M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

Panda, S.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Paramei, G. V.

Pelli, D.

M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
[Crossref]

Piggins, H. D.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Pokorny, J.

Reniff, L.

Rieke, F.

Rinner, O.

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

Ryan, J.

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Schmidt, T. M.

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

Semo, M.

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Shelton, A.

Smith, V. C.

Spitschan, M.

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Stoehr, B.

Tang, M.

Tayon, M.

Tokuda, Y.

S.-I. Tsujimura and Y. Tokuda, “Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex,” Ophthalmic Physiolog. Opt. 31, 469–479 (2011).
[Crossref]

Tsujimura, S. I.

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Tsujimura, S.-I.

M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

S.-I. Tsujimura and Y. Tokuda, “Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex,” Ophthalmic Physiolog. Opt. 31, 469–479 (2011).
[Crossref]

Uchikawa, K.

Vickery, G.

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Vugler, A.

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Woelders, T.

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

Wynne, J.

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Yamakawa, M.

M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

Yamashita, W.

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Yamauchi, Y.

Yang, P. L.

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Yeh, S. L.

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Yu, C.-L.

Zele, A. J.

Curr. Biol. (1)

T. M. Brown, S.-I. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Front. Neurol. (1)

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

J. Neurosci. (1)

T. M. Schmidt, M. T. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia, “Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function,” J. Neurosci. 31, 16094–16101 (2011).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (8)

Nat. Commun. (1)

A. E. Allen, F. P. Martial, and R. J. Lucas, “Form vision from melanopsin in humans,” Nat. Commun. 10, 2274 (2019).
[Crossref]

Ophthalmic Physiolog. Opt. (1)

S.-I. Tsujimura and Y. Tokuda, “Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex,” Ophthalmic Physiolog. Opt. 31, 469–479 (2011).
[Crossref]

Perception (1)

M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 1–16 (2007).
[Crossref]

PLoS Biol. (1)

T. M. Brown, C. Gias, M. Hatori, S. R. Keding, M. Semo, P. J. Coffey, J. Gigg, H. D. Piggins, S. Panda, and R. J. Lucas, “Melanopsin contributions to irradiance coding in the thalamo-cortical visual system,” PLoS Biol. 8, e1000558 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

M. Spitschan, A. S. Bock, J. Ryan, G. Frazzetta, D. H. Brainard, and G. K. Aguirre, “The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience,” Proc. Natl. Acad. Sci. USA 114, 12291–12296 (2017).
[Crossref]

Psychonomic Bull. Rev. (1)

G. R. Loftus and E. J. M. Michael, “Using confidence intervals in within-subject designs,” Psychonomic Bull. Rev. 1, 476–490 (1994).
[Crossref]

Sci. Rep. (2)

M. Yamakawa, S.-I. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

P. L. Yang, S. I. Tsujimura, A. Matsumoto, W. Yamashita, and S. L. Yeh, “Subjective time expansion with increased stimulation of intrinsically photosensitive retinal ganglion cells,” Sci. Rep. 8, 11693 (2018).
[Crossref]

Vision Res. (2)

O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref]

J. M. Loomis and T. Berger, “Effects of chromatic adaptation on color discrimination and color appearance,” Vision Res. 19, 891–901 (1979).
[Crossref]

Other (1)

T. De Lawyer, “Brown induction and red-green hue shifts,” Ph.D. dissertation (University of Washington, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Spectra for the four primaries of the three projectors. Blue and red (top row) are both controlled by a single projector with a mid-wavelength filter. Yellow and green (bottom row) are controlled by individual projectors with filters blocking higher and lower wavelengths. These spectra measurements are representative of actual presentation conditions (the other projectors are still turned on and projecting “black” [0, 0, 0] during all measurements).
Fig. 2.
Fig. 2. Actual image of apparatus used in this experiment, with the right side uncovered. On the left side one can see the chinrest, pinhole cutout, and the white diffuser plate that subjects would view the stimuli on. The right side shows the three projectors and their respective filters, which would not be visible during an experiment, as a black cloth would be covering the entire side.
Fig. 3.
Fig. 3. Representation of the task as it would appear to subjects looking through the apparatus. (A) shows a condition where only melanopsin signal varies between the two sides (not actually visible in this paper); (B) shows conditions where the luminance varies (two brighter and two darker than that seen in (A), as well as the four possible comparison hues of orange, magenta, green, and yellow. The melanopsin activity-varying stimulus (low, medium, and high) could be any of the luminance-varying stimuli seen on the left sides of the black line in (A) and (B), whereas the comparison stimuli were any of the four equiluminant stimuli seen on the right side of the black line in (B) [the top left stimulus’s right side is identical to the right side of (A)]. During the actual experiment, both sets of stimuli could appear on either side.
Fig. 4.
Fig. 4. Main effect of the melanopsin condition for the three levels of low, medium, and high. The $y$ axis shows the percentage of time an observer said the given melanopsin signal-varying orange stimulus was brighter than an equiluminant ( ${\sim}{600}\;{{\rm cd/m}^2}$ ) orange, magenta, yellow, or green stimulus regardless of the luminance of the melanopsin-varying stimulus. Error bars represent the standard error of the mean (SEM) adjusted for within-subjects data [19].
Fig. 5.
Fig. 5. Main effect of the luminance condition for the five levels of 500, 550, 600, 650, and ${700}\;{{\rm cd/m}^2}$ . The $y$ axis shows the percentage of time an observer said any of the melanopsin signal-varying orange stimuli at the given luminance level were brighter than an equiluminant ( ${\sim}{600}\;{{\rm cd/m}^2}$ ) orange, magenta, yellow, or green stimulus. Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 6.
Fig. 6. Main effect for hue category for each of the four comparison hues used in this experiment. The $y$ axis shows the percentage of time an observer said any of the melanopsin signal-varying and luminance-varying orange stimuli were brighter than the given equiluminant ( ${\sim}{600}\;{{\rm cd/m}^2}$ ) orange, magenta, yellow, or green stimulus. Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 7.
Fig. 7. Interaction between melanopsin stimulation and luminance. The blue line is a low melanopsin signal, the red line is a medium melanopsin signal, and the green line is a high melanopsin signal. Luminance of the melanopsin signal-varying orange stimulus at the time of comparison is seen on the $x$ axis. The $y$ axis shows the percentage of time an observer said the melanopsin signal-varying and luminance-varying orange stimuli were brighter than an equiluminant ( ${\sim}{600}\;{{\rm cd/m}^2}$ ) orange, magenta, yellow, or green stimulus. Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 8.
Fig. 8. Axes and labels are identical to Fig. 7. Here the interaction among all three factors of melanopsin, luminance, and hue is made apparent by eliminating the non-orange comparison hues from the data displayed in Fig. 7. The magnitude of the melanopsin activity effect on brightness judgments between low and high conditions for equiluminant orange ( ${600}\;{{\rm cd/m}^2}$ ) is larger than that of the luminance change to ${550}\;{{\rm cd/m}^2}$ or ${650}\;{{\rm cd/m}^2}$ . Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 9.
Fig. 9. Axes and labels are identical to Fig. 8. This is the equivalent graph for magenta comparisons only. Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 10.
Fig. 10. Axes and labels are identical to Fig. 8. This is the equivalent graph for yellow comparisons only. Error bars represent SEM, adjusted for within-subjects data [19].
Fig. 11.
Fig. 11. Axes and labels are identical to Fig. 8. This is the equivalent graph for green comparisons only. Error bars represent SEM, adjusted for within-subjects data [19].

Tables (7)

Tables Icon

Table 1. Values of Stimuli Used in Experiment

Tables Icon

Table 2. Variation of Medium Orange Stimuli over Time

Tables Icon

Table 3. Individual Subject Difference Scores for Melanopsin Conditions for Equiluminant Orange Comparisons

Tables Icon

  Within-Subjects Effects

Tables Icon

  Post Hoc Comparisons: Mela

Tables Icon

  Post Hoc Comparisons: Luma

Tables Icon

  Post Hoc Comparisons: Huea

Metrics