Abstract

We describe the design, construction, calibration, and characterization of a multi-primary high dynamic range (MPHDR) display system for use in vision research. The MPHDR display is the first system to our knowledge to allow for spatially controllable, high dynamic range stimulus generation using multiple primaries. We demonstrate the high luminance, high dynamic range, and wide color gamut output of the MPHDR display. During characterization, the MPHDR display achieved a maximum luminance of $ 3200\; {\rm cd}/{{\rm m}^2} $, a maximum contrast range of $ 3,240,000:1 $, and an expanded color gamut tailored to dedicated vision research tasks that spans beyond traditional sRGB displays. We discuss how the MPHDR display could be optimized for psychophysical experiments with photoreceptor isolating stimuli achieved through the method of silent substitution. We present an example case of a range of metameric pairs of melanopsin isolating stimuli across different luminance levels, from an available melanopsin contrast of 117% at $ 75\; {\rm cd}/{{\rm m}^2} $ to a melanopsin contrast of 23% at $ 2000\; {\rm cd}/{{\rm m}^2} $.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
The Verriest Lecture: Visual properties of metameric blacks beyond cone vision

Françoise Viénot and Hans Brettel
J. Opt. Soc. Am. A 31(4) A38-A46 (2014)

Relative contributions of melanopsin to brightness discrimination when hue and luminance also vary

Tanner DeLawyer, Sei-ichi Tsujimura, and Keizo Shinomori
J. Opt. Soc. Am. A 37(4) A81-A88 (2020)

Rhodopsin and melanopsin contributions to human brightness estimation

Andrew J. Zele, Ashim Dey, Prakash Adhikari, and Beatrix Feigl
J. Opt. Soc. Am. A 37(4) A145-A153 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Stockman and L. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
    [Crossref]
  2. A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
    [Crossref]
  3. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  4. H. Bailes and R. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (γmax ≈ 479 nm) supporting activation of Gq/11and Gi/osignalling cascades,” Proc. R. Soc. B Biol. Sci. 280, 20122987 (2013).
    [Crossref]
  5. M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
    [Crossref]
  6. O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vision Res. 22, 681–691 (1982).
    [Crossref]
  7. O. Estévez and H. Spekreijse, “A spectral compensation method for determining flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
    [Crossref]
  8. D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
    [Crossref]
  9. J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
    [Crossref]
  10. O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
    [Crossref]
  11. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).
  12. I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
    [Crossref]
  13. D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
    [Crossref]
  14. M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
    [Crossref]
  15. G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
    [Crossref]
  16. T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
    [Crossref]
  17. M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
    [Crossref]
  18. D. McDougal and P. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vision Res. 50, 72–87 (2010).
    [Crossref]
  19. M. Spitschan, “Photoreceptor inputs to pupil control,” J. Vis. 19(9):5, 1–5 (2019).
    [Crossref]
  20. A. Shapiro, J. Pokorny, and V. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
    [Crossref]
  21. H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
    [Crossref]
  22. M. Aguilar and W. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Optica Acta 1, 59–65 (1954).
    [Crossref]
  23. G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
    [Crossref]
  24. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
    [Crossref]
  25. Thorlabs, “Notch filter, central wavelength 514 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3880&pn=NF514-17#6358 .
  26. Thorlabs, “Notch filter, central wavelength 488 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3880&pn=NF488-15 .
  27. Thorlabs, “Bandpass filter, central wavelength 500 nm, full-width half-maximum 40 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1860&pn=FBH400-40 .
  28. J.-S. Seo, T.-E. Yeom, and J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16, 151–156 (2012).
    [Crossref]
  29. D. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
    [Crossref]
  30. R. Carpenter and J. Robson, Vision Research: A Practical Guide to Laboratory Methods (Oxford University, 1998).
  31. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref]
  32. I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
    [Crossref]
  33. G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
    [Crossref]

2019 (2)

M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

M. Spitschan, “Photoreceptor inputs to pupil control,” J. Vis. 19(9):5, 1–5 (2019).
[Crossref]

2018 (1)

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

2016 (1)

G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
[Crossref]

2015 (2)

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
[Crossref]

2013 (1)

H. Bailes and R. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (γmax ≈ 479 nm) supporting activation of Gq/11and Gi/osignalling cascades,” Proc. R. Soc. B Biol. Sci. 280, 20122987 (2013).
[Crossref]

2012 (2)

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

J.-S. Seo, T.-E. Yeom, and J.-H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16, 151–156 (2012).
[Crossref]

2010 (2)

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

D. McDougal and P. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vision Res. 50, 72–87 (2010).
[Crossref]

2005 (1)

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

2004 (2)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
[Crossref]

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

2003 (1)

M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
[Crossref]

2001 (3)

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
[Crossref]

2000 (2)

A. Stockman and L. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

1999 (2)

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
[Crossref]

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

1997 (1)

D. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

1996 (1)

1982 (1)

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vision Res. 22, 681–691 (1982).
[Crossref]

1974 (1)

O. Estévez and H. Spekreijse, “A spectral compensation method for determining flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref]

1966 (1)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref]

1954 (1)

M. Aguilar and W. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Optica Acta 1, 59–65 (1954).
[Crossref]

Aguilar, C.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Aguilar, M.

M. Aguilar and W. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Optica Acta 1, 59–65 (1954).
[Crossref]

Ajito, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

Allen, A.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Allender, S.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Altimus, C.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Bailes, H.

H. Bailes and R. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (γmax ≈ 479 nm) supporting activation of Gq/11and Gi/osignalling cascades,” Proc. R. Soc. B Biol. Sci. 280, 20122987 (2013).
[Crossref]

Barrionuevo, P.

D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
[Crossref]

Bedford, R.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Berson, D.

M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
[Crossref]

Brainard, D.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

D. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

Brainard, G.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Brown, T.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Byrne, B.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Cameron, M.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Cao, D.

D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
[Crossref]

Carpenter, R.

R. Carpenter and J. Robson, Vision Research: A Practical Guide to Laboratory Methods (Oxford University, 1998).

Dacey, D.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Damberg, G.

G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
[Crossref]

Diller, L.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Enezi, J.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Estévez, O.

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vision Res. 22, 681–691 (1982).
[Crossref]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref]

Fach, C.

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
[Crossref]

Farel, R.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Gamlin, P.

D. McDougal and P. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vision Res. 50, 72–87 (2010).
[Crossref]

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Gerner, E.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Glickman, G.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Greeson, J.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Gregson, J.

G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
[Crossref]

Güler, A.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Hanifin, J.

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

Hankins, M.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Hayes, W.

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Heidrich, W.

G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
[Crossref]

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Jiang, G.

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Kauvar, I.

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

Ko, J.-H.

Lall, G.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Lee, B.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Liao, H.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Lucas, R.

H. Bailes and R. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (γmax ≈ 479 nm) supporting activation of Gq/11and Gi/osignalling cascades,” Proc. R. Soc. B Biol. Sci. 280, 20122987 (2013).
[Crossref]

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

McDougal, D.

D. McDougal and P. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vision Res. 50, 72–87 (2010).
[Crossref]

McDowall, I.

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

Momiji, H.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Moreira, E.

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Nicandro, N.

D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
[Crossref]

Obi, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

Ohyama, N.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

Okajima, K.

M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

Packer, O.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Peterson, B.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Pokorny, J.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
[Crossref]

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
[Crossref]

A. Shapiro, J. Pokorny, and V. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[Crossref]

Provencio, I.

M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
[Crossref]

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Quinlan, J.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
[Crossref]

Revell, V.

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Robson, J.

R. Carpenter and J. Robson, Vision Research: A Practical Guide to Laboratory Methods (Oxford University, 1998).

Rodriguez, I.

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Rollag, M.

M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
[Crossref]

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Seo, J.-S.

Shapiro, A.

Sharpe, L.

A. Stockman and L. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
[Crossref]

Shi, L.

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

Smith, V.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
[Crossref]

A. Shapiro, J. Pokorny, and V. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996).
[Crossref]

Smithson, H.

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
[Crossref]

Spekreijse, H.

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vision Res. 22, 681–691 (1982).
[Crossref]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref]

Spitschan, M.

M. Spitschan, “Photoreceptor inputs to pupil control,” J. Vis. 19(9):5, 1–5 (2019).
[Crossref]

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

Stiles, W.

M. Aguilar and W. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Optica Acta 1, 59–65 (1954).
[Crossref]

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stockman, A.

A. Stockman and L. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
[Crossref]

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Sun, H.

H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
[Crossref]

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Tsujimura, S.

M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Verweij, J.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Vickery, G.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Vugler, A.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Westheimer, G.

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref]

Wetzstein, G.

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

Williams, D.

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

Woelders, T.

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

Wynne, J.

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Yamaguchi, M.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

Yamakawa, M.

M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

Yang, S. J.

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

Yau, K.

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Yeom, T.-E.

ACM Trans. Graph. (3)

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM Trans. Graph. 23, 760–768 (2004).
[Crossref]

I. Kauvar, S. J. Yang, L. Shi, I. McDowall, and G. Wetzstein, “Adaptive color display via perceptually-driven factored spectral projection,” ACM Trans. Graph. 34, 1–10 (2015).
[Crossref]

G. Damberg, J. Gregson, and W. Heidrich, “High brightness HDR projection using dynamic freeform lensing,” ACM Trans. Graph. 35, 1–11 (2016).
[Crossref]

Col. Res. Appl. (1)

H. Sun, J. Pokorny, and V. Smith, “Control of the modulation of human photoreceptors,” Col. Res. Appl. 26, s69–s75 (2001).
[Crossref]

Curr. Biol. (1)

T. Brown, S. Tsujimura, A. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012).
[Crossref]

Front. Neurol. (1)

M. Spitschan and T. Woelders, “The method of silent substitution for examining melanopsin contributions to pupil control,” Front. Neurol. 9, 941 (2018).
[Crossref]

J. Biol. Rhythms (1)

M. Rollag, D. Berson, and I. Provencio, “Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment,” J. Biol. Rhythms 18, 227–234 (2003).
[Crossref]

J. Neurosci. (2)

G. Brainard, J. Hanifin, J. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
[Crossref]

I. Provencio, I. Rodriguez, G. Jiang, W. Hayes, E. Moreira, and M. Rollag, “A novel human opsin in the inner retina,” J. Neurosci. 20, 600–605 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

J. Vis. (2)

M. Spitschan, “Photoreceptor inputs to pupil control,” J. Vis. 19(9):5, 1–5 (2019).
[Crossref]

D. Cao, N. Nicandro, and P. Barrionuevo, “A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans,” J. Vis. 15(1):27, 27 (2015).
[Crossref]

Multispectral Imaging (1)

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, “Six-primary color projection display for expanded color gamut reproduction,” Multispectral Imaging 138, 135–138 (1999).

Nature (1)

D. Dacey, H. Liao, B. Peterson, R. Farel, V. Smith, J. Pokorny, K. Yau, and P. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005).
[Crossref]

Neuron (1)

G. Lall, V. Revell, H. Momiji, J. Enezi, C. Altimus, A. Güler, C. Aguilar, M. Cameron, S. Allender, M. Hankins, and R. Lucas, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010).
[Crossref]

Optica Acta (1)

M. Aguilar and W. Stiles, “Saturation of the rod mechanism of the retina at high levels of stimulation,” Optica Acta 1, 59–65 (1954).
[Crossref]

Proc. R. Soc. B Biol. Sci. (1)

H. Bailes and R. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light (γmax ≈ 479 nm) supporting activation of Gq/11and Gi/osignalling cascades,” Proc. R. Soc. B Biol. Sci. 280, 20122987 (2013).
[Crossref]

Sci. Rep. (1)

M. Yamakawa, S. Tsujimura, and K. Okajima, “A quantitative analysis of the contribution of melanopsin to brightness perception,” Sci. Rep. 9, 7568 (2019).
[Crossref]

Spatial Vision (1)

D. Brainard, “The Psychophysics Toolbox,” Spatial Vision 10, 433–436 (1997).
[Crossref]

Vision Res. (7)

G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref]

D. McDougal and P. Gamlin, “The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex,” Vision Res. 50, 72–87 (2010).
[Crossref]

O. Packer, L. Diller, J. Verweij, B. Lee, J. Pokorny, D. Williams, D. Dacey, and D. Brainard, “Characterization and use of a digital light projector for vision research,” Vision Res. 41, 427–439 (2001).
[Crossref]

O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vision Res. 22, 681–691 (1982).
[Crossref]

O. Estévez and H. Spekreijse, “A spectral compensation method for determining flicker characteristics of the human colour mechanisms,” Vision Res. 14, 823–830 (1974).
[Crossref]

A. Stockman and L. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[Crossref]

A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vision Res. 39, 2901–2927 (1999).
[Crossref]

Visual Neurosci. (1)

J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263–267 (2004).
[Crossref]

Other (5)

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

R. Carpenter and J. Robson, Vision Research: A Practical Guide to Laboratory Methods (Oxford University, 1998).

Thorlabs, “Notch filter, central wavelength 514 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3880&pn=NF514-17#6358 .

Thorlabs, “Notch filter, central wavelength 488 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3880&pn=NF488-15 .

Thorlabs, “Bandpass filter, central wavelength 500 nm, full-width half-maximum 40 nm transmission data,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1860&pn=FBH400-40 .

Supplementary Material (2)

NameDescription
» Visualization 1       Movie file of the CIE xyY chromaticity diagram, shown in linear luminance space, of the MPHDR display.
» Visualization 2       Movie file of the CIE xyY chromaticity diagram, shown in log luminance space, of the MPHDR display.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Principle of silent substitution, for the special case of metameric pairs. (a) Spectral sensitivity functions of the photoreceptors. (b) A pair of spectra that are clearly different, yet yield metameric cone responses, with differing rod and melanopsin responses. (c) Relative responses of the photoreceptors to the spectra shown in (b). (d) Percentage difference in response for each photoreceptor type to the spectra shown in (b). The relative activity in the cones is constant, while the relative activity in rods and in melanopsin is different, by 5.1% and 9.3%, respectively. The two spectra in (b) are metamers for cones.
Fig. 2.
Fig. 2. (a) Schematic of the display setup. Observers should view the display from the “sweet spot,” the optimal position for overlap of the backlight from each projector. The schematic depicts the light path from the two DLPs (P1 and P2), passing through the filters stacked in front on the DLPs (F1–F4) through two diffusers (D1 and D2) which sandwich a Fresnel lens (FL) before passing through the LCD panel (LCD) and reaching the observer. (b) Relative emission spectra of the projector lamp after passing through the DLP chips used in the display (without filters). (c) Transmissitivity of the LCD panel used in the display, measured before construction of the setup. The spectra of the DLPs and LCD transmission were measured using a JETI Specbos 1211. (d) Transmission of the filters used in the bottom HDR configuration, where the bottom projector ( $ {P_2} $ ) illuminates the LCD. (e) Transmission of the filters used in the top HDR configuration, where the top projector ( $ {P_1} $ ) illuminates the LCD. The transmission of the filters reported here is specification data provided by the manufacturer, ThorLabs [252627].
Fig. 3.
Fig. 3. (a) Layers of a generic LCD panel. The layer labeled 1 indicates the front polarizing layer of the LCD, and the layer labeled 2 indicates the back polarizing layer of the LCD. These were the only two additional layers of the LCD panel, along with the LCD itself, kept in the final display setup. (b) Photograph of the MPHDR without the final casing. The CAD design of one of the 3D printed filter mounts is shown as an inset. (c) Representative CAD drawing of the setup. (d) Photograph of the MPHDR with final casing.
Fig. 4.
Fig. 4. (a) Six effective primaries available from the MPHDR display. Note that the spectra of primaries $ {P_4}(\lambda ) $ , $ {P_5}(\lambda ) $ , and $ {P_6}(\lambda ) $ are measured from 380 nm to 560 nm given the transmission properties of the bandpass cut-off filter placed in the top HDR configuration. (b) Spectral output of the MPHDR display when all six effective primaries are set to maximum.
Fig. 5.
Fig. 5. (a) Display response curve for the top projector. (b) Display response curve for the bottom projector. (c) Display response curve for the LCD panel. (d) Predicted and measured luminance (black cross symbols) matches after display response correction.
Fig. 6.
Fig. 6. (a) Color gamut available from the MPHDR display, broken down into the two HDR configurations when all six effective primaries are available, expressed using the CIE 1931 $xy$ chromaticity coordinates. The sRGB gamut is shown for comparison. (b) Photographs of the display when (i) only the top HDR configuration is on (for the circles top, bottom-left, and bottom right, respectively: $ \kappa = [1,0,1,0,0] $ , $ \kappa = [1,0,0,1,0] $ , $ \kappa = [1,0,0,0,1] $ ); (ii) only the bottom HDR configuration is on ( $ \kappa = [0,1,1,0,0] $ , $ \kappa = [0,1,0,1,0] $ , $ \kappa = [0,1,0,0,1] $ ); (iii) MPHDR when both HDR configurations are contributing ( $ \kappa = [1,1,1,0,0] $ , $ \kappa = [1,1,0,1,0] $ , $ \kappa = [1,1,0,0,1] $ ). Note that the fringes seen in (b.iii) have been introduced by the camera’s optics and are not visible on the display. (c) Bar charts showing the relative response of each photoreceptor type to each primary, appropriately scaled for each photoreceptor class.
Fig. 7.
Fig. 7. (a) 3D color gamut in CIE $xyY$ chromaticity coordinates, plotted in log scale for the luminance axis. (b) 3D color gamut as in (a), shown again here in CIE $xyY$ chromaticity coordinates, in linear scale for the luminance axis. These figures are also provided as movie files in Visualization 1 and Visualization 2.
Fig. 8.
Fig. 8. (a) Example of a metameric pair of melanopsin isolating stimuli. The measured spectral output from the MPHDR display (shown as a dashed line) overlaps the desired spectral output from the MPHDR display (shown as a solid line) generated using the display algorithm. (b) Available melanopsin contrast as a function of luminance, for both the measured contrast and predicted contrast.

Tables (3)

Tables Icon

Table 1. Components of the Display System

Tables Icon

Table 2. Comparison of the Full On/Off (Global) and ANSI (Local) Contrast Range of the Individual Components and Configurations of the MPHDR Display Compared to the Full MPHDR Display Configuration

Tables Icon

Table 3. Comparison of Features of the Different Systems Available for Vision Experiments a

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

k = A B 1 ,
k = [ k 1 k 2 k 3 k 4 k 5 ] , A = [ A L A M A S A R A I ] , B i , j = λ = 380 780 R i ( λ ) P j ( λ ) d λ , i { L , M , S , R , I } , j { 1 , 2 , 3 , 4 , 5 } .
κ = [ k E 1 , k E 2 , k T R , k T G , k T B ] .
s ( λ ) = i j k E i k T j E i ( λ ) T j ( λ ) ,
i { 1 , 2 } , j { R , G , B } .
P n ( λ ) = E i ( λ ) T j ( λ ) .
s ( λ ) = k E 1 ( k T R P 1 ( λ ) + k T G P 2 ( λ ) + k T B P 3 ( λ ) ) + k E 2 ( k T R P 4 ( λ ) + k T G P 5 ( λ ) + k T B P 6 ( λ ) ) ,
κ 1 = [ k E 1 ; 1 , k E 2 ; 1 , k T R ; 1 , k T G ; 1 , k T B ; 1 ] ,
κ 2 = [ k E 1 ; 2 , k E 2 ; 2 , k T R ; 2 , k T G ; 2 , k T B ; 2 ] ,
A = λ = 380 780 R ( λ ) s ( λ ) d λ .
C = A 2 A 1 A 1 .
log A 2 log A 1 .
log ( A 2 ; i s o l a t e d ) log ( A 1 ; i s o l a t e d ) .
a r g m a x κ 1 , κ 2 log ( A 2 ; i s o l a t e d ) log ( A 1 ; i s o l a t e d ) .
( log ( A 2 ; s i l e n t ) log ( A 1 ; s i l e n t ) ) 2 = 0 ,
( log ( A 2 ; s i l e n t ) log ( A 1 ; s i l e n t ) ) 2 < ϵ .
D = L T max L T min ( L E 1 max + L E 2 max ) ( L E 1 min + L E 2 min ) ,
L T max : κ = [ 0 , 0 , 1 , 1 , 1 ] , L E 1 max : κ = [ 1 , 0 , 0 , 0 , 0 ] , L E 2 max : κ = [ 0 , 1 , 0 , 0 , 0 ] , L T min : κ = [ 0 , 0 , 0.0005 , 0.0005 , 0.0005 ] , L E 1 min : κ = [ 0.0005 , 0 , 0 , 0 , 0 ] , L E 2 min : κ = [ 0 , 0.0005 , 0 , 0 , 0 ] .

Metrics