Abstract

A new focal-plane three-dimensional (3D) imaging method based on temporal ghost imaging is proposed and demonstrated. By exploiting the advantages of temporal ghost imaging, this method enables the utilization of slow integrating cameras and facilitates 3D surface imaging within the framework of sequential flood-illumination and focal-plane detection. The depth information is achieved by a temporal correlation between received and reference signals with multiple-shot, and the reflectivity information is achieved by flash imaging with a single-shot. The feasibility and performance of this focal-plane 3D imaging method have been verified through theoretical analysis and numerical experiments.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access

Yi Kang, Leihong Zhang, Hualong Ye, Mantong Zhao, Saima Kanwal, Chunyan Bai, and Dawei Zhang
Photon. Res. 7(12) 1370-1380 (2019)

A systematic method for designing depth-fused multi-focal plane three-dimensional displays

Sheng Liu and Hong Hua
Opt. Express 18(11) 11562-11573 (2010)

Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation

Wen-Kai Yu, Xu-Ri Yao, Xue-Feng Liu, Long-Zhen Li, and Guang-Jie Zhai
Appl. Opt. 54(3) 363-367 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
    [Crossref]
  2. P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
    [Crossref]
  3. H. Nguyen, D. Nguyen, Z. Wang, H. Kieu, and M. Le, “Real-time, high-accuracy 3D imaging and shape measurement,” Appl. Opt. 54, A9–A17 (2015).
    [Crossref]
  4. J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and reinforcement learning,” in 22nd International Conference on Machine Learning (ACM, 2005), pp. 593–600.
  5. S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 981–994 (1992).
    [Crossref]
  6. L. A. Tamburino and J. Taboada, “Laser imaging and ranging system using one camera,” U.S. patent5,162,861 (November10, 1992).
  7. J. Taboada and L. A. Tamburino, “Laser imaging and ranging system using two cameras,” U.S. patent5,157,451 (October20, 1992).
  8. K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
    [Crossref]
  9. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [Crossref]
  10. D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
    [Crossref]
  11. A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
    [Crossref]
  12. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [Crossref]
  13. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
    [Crossref]
  14. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [Crossref]
  15. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [Crossref]
  16. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
    [Crossref]
  17. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
    [Crossref]
  18. D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [Crossref]
  19. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
    [Crossref]
  20. S. Nan, Y. Bai, X. Shi, Q. Shen, L. Qu, H. Li, and X. Fu, “Experimental investigation of ghost imaging of reflective objects with different surface roughness,” Photon. Res. 5, 372–376 (2017).
    [Crossref]
  21. Y.-K. Xu, W.-T. Liu, E.-F. Zhang, Q. Li, H.-Y. Dai, and P.-X. Chen, “Is ghost imaging intrinsically more powerful against scattering?” Opt. Express 23, 32993–33000 (2015).
    [Crossref]
  22. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
    [Crossref]
  23. F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
    [Crossref]
  24. Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
    [Crossref]
  25. J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
    [Crossref]
  26. X. Yao, W. Zhang, H. Li, L. You, Z. Wang, and Y. Huang, “Long-distance thermal temporal ghost imaging over optical fibers,” Opt. Lett. 43, 759–762 (2018).
    [Crossref]
  27. Y.-K. Xu, S.-H. Sun, W.-T. Liu, G.-Z. Tang, J.-Y. Liu, and P.-X. Chen, “Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging,” Opt. Express 26, 99–107 (2018).
    [Crossref]
  28. J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
    [Crossref]
  29. H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
    [Crossref]
  30. W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
    [Crossref]
  31. J. Wu, F.-X. Wang, W. Chen, S. Wang, D.-Y. He, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, “Temporal ghost imaging for quantum device evaluation,” Opt. Lett. 44, 2522–2525 (2019).
    [Crossref]

2019 (3)

2018 (4)

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

X. Yao, W. Zhang, H. Li, L. You, Z. Wang, and Y. Huang, “Long-distance thermal temporal ghost imaging over optical fibers,” Opt. Lett. 43, 759–762 (2018).
[Crossref]

Y.-K. Xu, S.-H. Sun, W.-T. Liu, G.-Z. Tang, J.-Y. Liu, and P.-X. Chen, “Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging,” Opt. Express 26, 99–107 (2018).
[Crossref]

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

2017 (1)

2016 (2)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

F. Devaux, P.-A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3, 698–701 (2016).
[Crossref]

2015 (2)

2013 (1)

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

2012 (2)

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

2011 (1)

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

2005 (3)

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[Crossref]

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

2001 (1)

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

1995 (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

1992 (2)

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 981–994 (1992).
[Crossref]

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

Abouraddy, A. F.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

Ayer, K. W.

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

Bai, Y.

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Boyd, R. W.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

Cao, D.-Z.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Chen, H.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Chen, P.-X.

Chen, W.

Chen, X.-H.

Chen, Z.

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

Cheng, J.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

Cheng, M.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Cochran, S. D.

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 981–994 (1992).
[Crossref]

Dai, H.-Y.

Deng, L.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Denis, S.

Devaux, F.

Dudley, J. M.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Fetner, R. H.

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

Friberg, A. T.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Fu, X.

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

Geng, J.

Genty, G.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Guo, G.-C.

Han, S.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

Han, Z.-F.

He, D.-Y.

He, G.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

He, K.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Huang, Y.

Jacobs, J. M.

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

Jiang, S.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Jiang, W.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Kieu, H.

Klyshko, D.

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Lantz, E.

Le, M.

Li, F.-L.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Li, H.

Li, Q.

Li, X.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Li, Y.

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

Liu, D.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Liu, J.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Liu, J.-Y.

Liu, W.-T.

Liu, Y.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Lu, L.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Martin, W. C.

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

McManamon, P.

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

Medioni, G.

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 981–994 (1992).
[Crossref]

Michels, J.

J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and reinforcement learning,” in 22nd International Conference on Machine Learning (ACM, 2005), pp. 593–600.

Moreau, P.-A.

Nan, S.

Ng, A. Y.

J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and reinforcement learning,” in 22nd International Conference on Machine Learning (ACM, 2005), pp. 593–600.

Nguyen, D.

Nguyen, H.

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Qu, L.

Ryczkowski, P.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6, 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Saleh, B. E. A.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

Saxena, A.

J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and reinforcement learning,” in 22nd International Conference on Machine Learning (ACM, 2005), pp. 593–600.

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Sergienko, A. V.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

Shen, Q.

Shi, J.

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

Shi, X.

Shih, Y.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

Strekalov, D.

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Sun, B.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Sun, S.-H.

Taboada, J.

L. A. Tamburino and J. Taboada, “Laser imaging and ranging system using one camera,” U.S. patent5,162,861 (November10, 1992).

J. Taboada and L. A. Tamburino, “Laser imaging and ranging system using two cameras,” U.S. patent5,157,451 (October20, 1992).

Tamburino, L. A.

J. Taboada and L. A. Tamburino, “Laser imaging and ranging system using two cameras,” U.S. patent5,157,451 (October20, 1992).

L. A. Tamburino and J. Taboada, “Laser imaging and ranging system using one camera,” U.S. patent5,162,861 (November10, 1992).

Tang, G.-Z.

Tang, J.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Tang, Y.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Teich, M. C.

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

Wang, F.-X.

Wang, J.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Wang, K.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Wang, S.

Wang, Y.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Wang, Z.

Wu, H.

Wu, J.

Wu, L.-A.

Xiong, J.

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

Xu, Y.-K.

Xu, Z.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Yao, X.

Yin, Z.-Q.

You, L.

Zeng, G.

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

Zhai, Y.-H.

Zhang, D.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[Crossref]

Zhang, E.-F.

Zhang, M.

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

Zhang, W.

Zhang, Z.

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Zheng, H.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Zhou, Y.

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

IEEE Photon. J. (1)

J. Tang, Y. Tang, K. He, L. Lu, D. Zhang, M. Cheng, L. Deng, D. Liu, and M. Zhang, “Computational temporal ghost imaging using intensity-only detection over a single optical fiber,” IEEE Photon. J. 10, 1–9 (2018).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. D. Cochran and G. Medioni, “3-D surface description from binocular stereo,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 981–994 (1992).
[Crossref]

Nat. Photonics (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10, 167–170 (2016).
[Crossref]

Opt. Commun. (1)

J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F.-L. Li, and Z. Xu, “High visibility temporal ghost imaging with classical light,” Opt. Commun. 410, 824–829 (2018).
[Crossref]

Opt. Eng. (2)

P. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51, 060901 (2012).
[Crossref]

Z. Chen, H. Li, Y. Li, J. Shi, and G. Zeng, “Temporal ghost imaging with a chaotic laser,” Opt. Eng. 52, 076103 (2013).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

W. Jiang, X. Li, S. Jiang, Y. Wang, Z. Zhang, G. He, and B. Sun, “Increase the frame rate of a camera via temporal ghost imaging,” Opt. Lasers Eng. 122, 164–169 (2019).
[Crossref]

Opt. Lett. (3)

Optica (2)

Photon. Res. (1)

Phys. Rev. A (4)

D.-Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
[Crossref]

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[Crossref]

Phys. Rev. Lett. (5)

D. Strekalov, A. Sergienko, D. Klyshko, and Y. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett. 74, 3600–3603 (1995).
[Crossref]

A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Role of entanglement in two-photon imaging,” Phys. Rev. Lett. 87, 123602 (2001).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[Crossref]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).
[Crossref]

Proc. SPIE (1)

K. W. Ayer, W. C. Martin, J. M. Jacobs, and R. H. Fetner, “Laser imaging and ranging system (LIMARS): a proof-of-concept experiment,” Proc. SPIE 1633, 54–63 (1992).
[Crossref]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).
[Crossref]

Other (3)

J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocular vision and reinforcement learning,” in 22nd International Conference on Machine Learning (ACM, 2005), pp. 593–600.

L. A. Tamburino and J. Taboada, “Laser imaging and ranging system using one camera,” U.S. patent5,162,861 (November10, 1992).

J. Taboada and L. A. Tamburino, “Laser imaging and ranging system using two cameras,” U.S. patent5,157,451 (October20, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Implementation scheme of the focal-plane 3D imaging method based on TGI. Inset drawing in the bottom right is the timing structure of the camera shutter and the reflected segments at different pixels.
Fig. 2.
Fig. 2. Simulation result of focal-plane 3D imaging method based on TGI. (a) Imaging target with a city scene. (b) 2D image of the city scene when observing from top down. (c) Depth image of the city scene. (d) 3D composite image of (b) and (c).
Fig. 3.
Fig. 3. Effect of $ M $ and $ \rho $ on depth imaging quality. (a) Correlation function $ C(x,y,S) $ when $ M $ is equal to 100, 200, and 600, which correspond to the red, blue, and green curves, respectively. (b) RMSE of reconstructed depth image when $ M $ changes from 100 to 600. (c) Correlation function $ C(x,y,S) $ when $ \rho $ is equal to 0.001, 0.01, and 0.1, which correspond to the red, blue, and green curves, respectively. (d) RMSE of reconstructed depth image when $ \rho $ changes from 0.001 to 0.2.
Fig. 4.
Fig. 4. Effect of measurements and DSNR on depth imaging quality. (a)–(d) Trend of reconstruction quality as the DSNR varies from 0 dB to 20 dB with 6000 measurements. (e)–(h) Trend of reconstruction quality as the number of measurements varies from 2000 to 30,000 with a DSNR of 10 dB. The $ x $-coordinate of (b)–(d) and (f)–(h) represents spacial distribution of the 1D object, while the $ y $-coordinate represents depth information.
Fig. 5.
Fig. 5. Influence of frame camera exposure jitter on depth imaging quality. (a)–(c) Reconstructed depth images of a 1D object when the standard deviation (STD) of camera exposure jitter is 5, 20, and 35 sampling periods. The top right corner of each figure is the corresponding histogram of camera exposure jitter. (d) Trend of reconstructed depth images’ RMSE as STD of camera exposure jitter varies from 0 to 35 sampling periods.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I s u m ( S ) = i = 1 S I r ( i τ ) , S = 1 , 2 P .
C ( x , y , S ) = Δ I t ( x , y ) Δ I s u m ( S ) [ Δ I t ( x , y ) ] 2 [ Δ I s u m ( S ) ] 2 ,
T ( x , y ) = arg max S : S > 0 C ( x , y , S ) .
I t ( x , y ) = i = 1 M I r ( i τ ) .
ρ = Δ I r ( i τ ) Δ I r ( j τ ) [ Δ I r ( i τ ) ] 2 [ Δ I r ( j τ ) ] 2 , I j .
C ( x , y , S ) = { S [ 1 + ( M 1 ) ρ ] M [ 1 + ( S 1 ) ρ ] , S M ; M [ 1 + ( S 1 ) ρ ] S [ 1 + ( M 1 ) ρ ] , S > M .

Metrics