Abstract

A new kind of pulsed beam, which we call a spatially truncated Gaussian pulsed beam, is defined to represent a Gaussian pulsed beam that is diffracted from a semi-infinite hard aperture. The analytical equations for the propagation of the spatially truncated Gaussian pulsed beam through a nonrotationally symmetric paraxial system with second-order dispersion is derived starting from the generalized spatiotemporal Huygens integral. The spatially truncated Gaussian pulsed beam is then combined with the conventional Gaussian pulsed beam decomposition method to enable the modeling of diffraction of a general ultrashort pulse from an arbitrarily shaped hard aperture. The accuracy of the analytical propagation equation derived for the propagation of the truncated Gaussian pulsed beam is evaluated by a numerical comparison with diffraction results obtained using the conventional pulse propagation method based on the Fourier transform algorithm. The application of the modified Gaussian pulsed beam decomposition method is demonstrated by propagating an ultrashort pulse after a circular aperture through a dispersive medium and a focusing aspherical lens with large chromatic aberration.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of truncated Gaussian beams and their application in modeling sharp-edge diffraction

Norman G. Worku and Herbert Gross
J. Opt. Soc. Am. A 36(5) 859-868 (2019)

Gaussian pulsed beam decomposition for propagation of ultrashort pulses through optical systems

Norman G. Worku and Herbert Gross
J. Opt. Soc. Am. A 37(1) 98-107 (2020)

Diffraction of an optical pulse as an expansion in ultrashort orthogonal Gaussian beam modes

Ronan J. Mahon and J. Anthony Murphy
J. Opt. Soc. Am. A 30(2) 215-226 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription