Abstract

This paper deals with the theory of primary aberrations for perturbed double-plane symmetric optical systems consisting of a combination of tilted and decentered surfaces and a circular pupil. First, the analytical expressions describing the full field behavior of Zernike polynomials are derived from the fourth-order wavefront aberration function for this class of optical systems. Then, such expressions are combined to retrieve the full field dependence of primary coma, primary astigmatism, and field curvature. They are described by an elliptical conic-shaped surface with a variable apex location over the field of view, by a binodal surface with two nodes over the field of view, and by a general elliptical surface with one node. The proposed analytical expressions provide a better understanding of the primary aberration behavior for these systems and can be of great use in their optical design and aberration correction. An optical system constituted by a pair of tilted and decentered biconic lenses is studied to validate the proposed expressions.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavefront aberration function in terms of R. V. Shack’s vector product and Zernike polynomial vectors

Robert W. Gray and Jannick P. Rolland
J. Opt. Soc. Am. A 32(10) 1836-1847 (2015)

Nodal aberration properties of coaxial imaging systems using Zernike polynomial surfaces

Tong Yang, Jun Zhu, and Guofan Jin
J. Opt. Soc. Am. A 32(5) 822-836 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription